2024-01-21 05:30:49 +01:00
|
|
|
"""
|
|
|
|
AnyText: Multilingual Visual Text Generation And Editing
|
|
|
|
Paper: https://arxiv.org/abs/2311.03054
|
|
|
|
Code: https://github.com/tyxsspa/AnyText
|
|
|
|
Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
"""
|
|
|
|
import os
|
2024-01-21 16:25:50 +01:00
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from iopaint.model.utils import set_seed
|
|
|
|
from safetensors.torch import load_file
|
2024-01-21 05:30:49 +01:00
|
|
|
|
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
|
import torch
|
|
|
|
import re
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import einops
|
|
|
|
from PIL import ImageFont
|
|
|
|
from iopaint.model.anytext.cldm.model import create_model, load_state_dict
|
|
|
|
from iopaint.model.anytext.cldm.ddim_hacked import DDIMSampler
|
|
|
|
from iopaint.model.anytext.utils import (
|
|
|
|
check_channels,
|
|
|
|
draw_glyph,
|
|
|
|
draw_glyph2,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
BBOX_MAX_NUM = 8
|
|
|
|
PLACE_HOLDER = "*"
|
|
|
|
max_chars = 20
|
|
|
|
|
2024-01-21 16:25:50 +01:00
|
|
|
ANYTEXT_CFG = os.path.join(
|
|
|
|
os.path.dirname(os.path.abspath(__file__)), "anytext_sd15.yaml"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def check_limits(tensor):
|
|
|
|
float16_min = torch.finfo(torch.float16).min
|
|
|
|
float16_max = torch.finfo(torch.float16).max
|
|
|
|
|
|
|
|
# 检查张量中是否有值小于float16的最小值或大于float16的最大值
|
|
|
|
is_below_min = (tensor < float16_min).any()
|
|
|
|
is_above_max = (tensor > float16_max).any()
|
|
|
|
|
|
|
|
return is_below_min or is_above_max
|
|
|
|
|
2024-01-21 05:30:49 +01:00
|
|
|
|
|
|
|
class AnyTextPipeline:
|
2024-01-21 16:25:50 +01:00
|
|
|
def __init__(self, ckpt_path, font_path, device, use_fp16=True):
|
|
|
|
self.cfg_path = ANYTEXT_CFG
|
2024-01-21 05:30:49 +01:00
|
|
|
self.font_path = font_path
|
|
|
|
self.use_fp16 = use_fp16
|
|
|
|
self.device = device
|
|
|
|
|
2024-01-21 16:25:50 +01:00
|
|
|
self.font = ImageFont.truetype(font_path, size=60)
|
|
|
|
self.model = create_model(
|
|
|
|
self.cfg_path,
|
|
|
|
device=self.device,
|
|
|
|
use_fp16=self.use_fp16,
|
|
|
|
)
|
|
|
|
if self.use_fp16:
|
|
|
|
self.model = self.model.half()
|
|
|
|
if Path(ckpt_path).suffix == ".safetensors":
|
|
|
|
state_dict = load_file(ckpt_path, device="cpu")
|
|
|
|
else:
|
|
|
|
state_dict = load_state_dict(ckpt_path, location="cpu")
|
|
|
|
self.model.load_state_dict(state_dict, strict=False)
|
|
|
|
self.model = self.model.eval().to(self.device)
|
|
|
|
self.ddim_sampler = DDIMSampler(self.model, device=self.device)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
negative_prompt: str,
|
|
|
|
image: np.ndarray,
|
|
|
|
masked_image: np.ndarray,
|
|
|
|
num_inference_steps: int,
|
|
|
|
strength: float,
|
|
|
|
guidance_scale: float,
|
|
|
|
height: int,
|
|
|
|
width: int,
|
|
|
|
seed: int,
|
|
|
|
sort_priority: str = "y",
|
|
|
|
callback=None,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt:
|
|
|
|
negative_prompt:
|
|
|
|
image:
|
|
|
|
masked_image:
|
|
|
|
num_inference_steps:
|
|
|
|
strength:
|
|
|
|
guidance_scale:
|
|
|
|
height:
|
|
|
|
width:
|
|
|
|
seed:
|
|
|
|
sort_priority: x: left-right, y: top-down
|
2024-01-21 05:30:49 +01:00
|
|
|
|
2024-01-21 16:25:50 +01:00
|
|
|
Returns:
|
|
|
|
result: list of images in numpy.ndarray format
|
|
|
|
rst_code: 0: normal -1: error 1:warning
|
|
|
|
rst_info: string of error or warning
|
|
|
|
|
|
|
|
"""
|
|
|
|
set_seed(seed)
|
2024-01-21 05:30:49 +01:00
|
|
|
str_warning = ""
|
|
|
|
|
2024-01-21 16:25:50 +01:00
|
|
|
mode = "text-editing"
|
|
|
|
revise_pos = False
|
|
|
|
img_count = 1
|
|
|
|
ddim_steps = num_inference_steps
|
|
|
|
w = width
|
|
|
|
h = height
|
|
|
|
strength = strength
|
|
|
|
cfg_scale = guidance_scale
|
|
|
|
eta = 0.0
|
2024-01-21 05:30:49 +01:00
|
|
|
|
|
|
|
prompt, texts = self.modify_prompt(prompt)
|
|
|
|
if prompt is None and texts is None:
|
|
|
|
return (
|
|
|
|
None,
|
|
|
|
-1,
|
|
|
|
"You have input Chinese prompt but the translator is not loaded!",
|
|
|
|
"",
|
|
|
|
)
|
|
|
|
n_lines = len(texts)
|
|
|
|
if mode in ["text-generation", "gen"]:
|
|
|
|
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
|
|
|
|
elif mode in ["text-editing", "edit"]:
|
2024-01-21 16:25:50 +01:00
|
|
|
if masked_image is None or image is None:
|
2024-01-21 05:30:49 +01:00
|
|
|
return (
|
|
|
|
None,
|
|
|
|
-1,
|
|
|
|
"Reference image and position image are needed for text editing!",
|
|
|
|
"",
|
|
|
|
)
|
2024-01-21 16:25:50 +01:00
|
|
|
if isinstance(image, str):
|
|
|
|
image = cv2.imread(image)[..., ::-1]
|
|
|
|
assert image is not None, f"Can't read ori_image image from{image}!"
|
|
|
|
elif isinstance(image, torch.Tensor):
|
|
|
|
image = image.cpu().numpy()
|
2024-01-21 05:30:49 +01:00
|
|
|
else:
|
|
|
|
assert isinstance(
|
2024-01-21 16:25:50 +01:00
|
|
|
image, np.ndarray
|
|
|
|
), f"Unknown format of ori_image: {type(image)}"
|
|
|
|
edit_image = image.clip(1, 255) # for mask reason
|
2024-01-21 05:30:49 +01:00
|
|
|
edit_image = check_channels(edit_image)
|
2024-01-21 16:25:50 +01:00
|
|
|
# edit_image = resize_image(
|
|
|
|
# edit_image, max_length=768
|
|
|
|
# ) # make w h multiple of 64, resize if w or h > max_length
|
2024-01-21 05:30:49 +01:00
|
|
|
h, w = edit_image.shape[:2] # change h, w by input ref_img
|
|
|
|
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
|
2024-01-21 16:25:50 +01:00
|
|
|
if masked_image is None:
|
2024-01-21 05:30:49 +01:00
|
|
|
pos_imgs = np.zeros((w, h, 1))
|
2024-01-21 16:25:50 +01:00
|
|
|
if isinstance(masked_image, str):
|
|
|
|
masked_image = cv2.imread(masked_image)[..., ::-1]
|
|
|
|
assert (
|
|
|
|
masked_image is not None
|
|
|
|
), f"Can't read draw_pos image from{masked_image}!"
|
|
|
|
pos_imgs = 255 - masked_image
|
|
|
|
elif isinstance(masked_image, torch.Tensor):
|
|
|
|
pos_imgs = masked_image.cpu().numpy()
|
2024-01-21 05:30:49 +01:00
|
|
|
else:
|
|
|
|
assert isinstance(
|
2024-01-21 16:25:50 +01:00
|
|
|
masked_image, np.ndarray
|
|
|
|
), f"Unknown format of draw_pos: {type(masked_image)}"
|
|
|
|
pos_imgs = 255 - masked_image
|
2024-01-21 05:30:49 +01:00
|
|
|
pos_imgs = pos_imgs[..., 0:1]
|
|
|
|
pos_imgs = cv2.convertScaleAbs(pos_imgs)
|
|
|
|
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
|
|
|
|
# seprate pos_imgs
|
|
|
|
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
|
|
|
|
if len(pos_imgs) == 0:
|
|
|
|
pos_imgs = [np.zeros((h, w, 1))]
|
|
|
|
if len(pos_imgs) < n_lines:
|
|
|
|
if n_lines == 1 and texts[0] == " ":
|
|
|
|
pass # text-to-image without text
|
|
|
|
else:
|
2024-01-21 16:25:50 +01:00
|
|
|
raise RuntimeError(
|
|
|
|
f"{n_lines} text line to draw from prompt, not enough mask area({len(pos_imgs)}) on images"
|
2024-01-21 05:30:49 +01:00
|
|
|
)
|
|
|
|
elif len(pos_imgs) > n_lines:
|
|
|
|
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt."
|
|
|
|
# get pre_pos, poly_list, hint that needed for anytext
|
|
|
|
pre_pos = []
|
|
|
|
poly_list = []
|
|
|
|
for input_pos in pos_imgs:
|
|
|
|
if input_pos.mean() != 0:
|
|
|
|
input_pos = (
|
|
|
|
input_pos[..., np.newaxis]
|
|
|
|
if len(input_pos.shape) == 2
|
|
|
|
else input_pos
|
|
|
|
)
|
|
|
|
poly, pos_img = self.find_polygon(input_pos)
|
|
|
|
pre_pos += [pos_img / 255.0]
|
|
|
|
poly_list += [poly]
|
|
|
|
else:
|
|
|
|
pre_pos += [np.zeros((h, w, 1))]
|
|
|
|
poly_list += [None]
|
|
|
|
np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
|
|
|
|
# prepare info dict
|
|
|
|
info = {}
|
|
|
|
info["glyphs"] = []
|
|
|
|
info["gly_line"] = []
|
|
|
|
info["positions"] = []
|
|
|
|
info["n_lines"] = [len(texts)] * img_count
|
|
|
|
gly_pos_imgs = []
|
|
|
|
for i in range(len(texts)):
|
|
|
|
text = texts[i]
|
|
|
|
if len(text) > max_chars:
|
|
|
|
str_warning = (
|
|
|
|
f'"{text}" length > max_chars: {max_chars}, will be cut off...'
|
|
|
|
)
|
|
|
|
text = text[:max_chars]
|
|
|
|
gly_scale = 2
|
|
|
|
if pre_pos[i].mean() != 0:
|
|
|
|
gly_line = draw_glyph(self.font, text)
|
|
|
|
glyphs = draw_glyph2(
|
|
|
|
self.font,
|
|
|
|
text,
|
|
|
|
poly_list[i],
|
|
|
|
scale=gly_scale,
|
|
|
|
width=w,
|
|
|
|
height=h,
|
|
|
|
add_space=False,
|
|
|
|
)
|
|
|
|
gly_pos_img = cv2.drawContours(
|
|
|
|
glyphs * 255, [poly_list[i] * gly_scale], 0, (255, 255, 255), 1
|
|
|
|
)
|
|
|
|
if revise_pos:
|
|
|
|
resize_gly = cv2.resize(
|
|
|
|
glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])
|
|
|
|
)
|
|
|
|
new_pos = cv2.morphologyEx(
|
|
|
|
(resize_gly * 255).astype(np.uint8),
|
|
|
|
cv2.MORPH_CLOSE,
|
|
|
|
kernel=np.ones(
|
|
|
|
(resize_gly.shape[0] // 10, resize_gly.shape[1] // 10),
|
|
|
|
dtype=np.uint8,
|
|
|
|
),
|
|
|
|
iterations=1,
|
|
|
|
)
|
|
|
|
new_pos = (
|
|
|
|
new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
|
|
|
|
)
|
|
|
|
contours, _ = cv2.findContours(
|
|
|
|
new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
|
|
)
|
|
|
|
if len(contours) != 1:
|
|
|
|
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..."
|
|
|
|
else:
|
|
|
|
rect = cv2.minAreaRect(contours[0])
|
|
|
|
poly = np.int0(cv2.boxPoints(rect))
|
|
|
|
pre_pos[i] = (
|
|
|
|
cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0
|
|
|
|
)
|
|
|
|
gly_pos_img = cv2.drawContours(
|
|
|
|
glyphs * 255, [poly * gly_scale], 0, (255, 255, 255), 1
|
|
|
|
)
|
|
|
|
gly_pos_imgs += [gly_pos_img] # for show
|
|
|
|
else:
|
|
|
|
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1))
|
|
|
|
gly_line = np.zeros((80, 512, 1))
|
|
|
|
gly_pos_imgs += [
|
|
|
|
np.zeros((h * gly_scale, w * gly_scale, 1))
|
|
|
|
] # for show
|
|
|
|
pos = pre_pos[i]
|
|
|
|
info["glyphs"] += [self.arr2tensor(glyphs, img_count)]
|
|
|
|
info["gly_line"] += [self.arr2tensor(gly_line, img_count)]
|
|
|
|
info["positions"] += [self.arr2tensor(pos, img_count)]
|
|
|
|
# get masked_x
|
|
|
|
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
|
|
|
|
masked_img = np.transpose(masked_img, (2, 0, 1))
|
|
|
|
masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device)
|
|
|
|
if self.use_fp16:
|
|
|
|
masked_img = masked_img.half()
|
|
|
|
encoder_posterior = self.model.encode_first_stage(masked_img[None, ...])
|
|
|
|
masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach()
|
|
|
|
if self.use_fp16:
|
|
|
|
masked_x = masked_x.half()
|
|
|
|
info["masked_x"] = torch.cat([masked_x for _ in range(img_count)], dim=0)
|
|
|
|
|
|
|
|
hint = self.arr2tensor(np_hint, img_count)
|
|
|
|
cond = self.model.get_learned_conditioning(
|
|
|
|
dict(
|
|
|
|
c_concat=[hint],
|
2024-01-21 16:25:50 +01:00
|
|
|
c_crossattn=[[prompt] * img_count],
|
2024-01-21 05:30:49 +01:00
|
|
|
text_info=info,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
un_cond = self.model.get_learned_conditioning(
|
2024-01-21 16:25:50 +01:00
|
|
|
dict(
|
|
|
|
c_concat=[hint],
|
|
|
|
c_crossattn=[[negative_prompt] * img_count],
|
|
|
|
text_info=info,
|
|
|
|
)
|
2024-01-21 05:30:49 +01:00
|
|
|
)
|
|
|
|
shape = (4, h // 8, w // 8)
|
|
|
|
self.model.control_scales = [strength] * 13
|
|
|
|
samples, intermediates = self.ddim_sampler.sample(
|
|
|
|
ddim_steps,
|
|
|
|
img_count,
|
|
|
|
shape,
|
|
|
|
cond,
|
|
|
|
verbose=False,
|
|
|
|
eta=eta,
|
|
|
|
unconditional_guidance_scale=cfg_scale,
|
|
|
|
unconditional_conditioning=un_cond,
|
2024-01-21 16:25:50 +01:00
|
|
|
callback=callback
|
2024-01-21 05:30:49 +01:00
|
|
|
)
|
|
|
|
if self.use_fp16:
|
|
|
|
samples = samples.half()
|
|
|
|
x_samples = self.model.decode_first_stage(samples)
|
|
|
|
x_samples = (
|
|
|
|
(einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5)
|
|
|
|
.cpu()
|
|
|
|
.numpy()
|
|
|
|
.clip(0, 255)
|
|
|
|
.astype(np.uint8)
|
|
|
|
)
|
|
|
|
results = [x_samples[i] for i in range(img_count)]
|
2024-01-21 16:25:50 +01:00
|
|
|
# if (
|
|
|
|
# mode == "edit" and False
|
|
|
|
# ): # replace backgound in text editing but not ideal yet
|
|
|
|
# results = [r * np_hint + edit_image * (1 - np_hint) for r in results]
|
|
|
|
# results = [r.clip(0, 255).astype(np.uint8) for r in results]
|
|
|
|
# if len(gly_pos_imgs) > 0 and show_debug:
|
|
|
|
# glyph_bs = np.stack(gly_pos_imgs, axis=2)
|
|
|
|
# glyph_img = np.sum(glyph_bs, axis=2) * 255
|
|
|
|
# glyph_img = glyph_img.clip(0, 255).astype(np.uint8)
|
|
|
|
# results += [np.repeat(glyph_img, 3, axis=2)]
|
2024-01-21 05:30:49 +01:00
|
|
|
rst_code = 1 if str_warning else 0
|
2024-01-21 16:25:50 +01:00
|
|
|
return results, rst_code, str_warning
|
2024-01-21 05:30:49 +01:00
|
|
|
|
|
|
|
def modify_prompt(self, prompt):
|
|
|
|
prompt = prompt.replace("“", '"')
|
|
|
|
prompt = prompt.replace("”", '"')
|
|
|
|
p = '"(.*?)"'
|
|
|
|
strs = re.findall(p, prompt)
|
|
|
|
if len(strs) == 0:
|
|
|
|
strs = [" "]
|
|
|
|
else:
|
|
|
|
for s in strs:
|
|
|
|
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1)
|
|
|
|
# if self.is_chinese(prompt):
|
|
|
|
# if self.trans_pipe is None:
|
|
|
|
# return None, None
|
|
|
|
# old_prompt = prompt
|
|
|
|
# prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1]
|
|
|
|
# print(f"Translate: {old_prompt} --> {prompt}")
|
|
|
|
return prompt, strs
|
|
|
|
|
|
|
|
# def is_chinese(self, text):
|
|
|
|
# text = checker._clean_text(text)
|
|
|
|
# for char in text:
|
|
|
|
# cp = ord(char)
|
|
|
|
# if checker._is_chinese_char(cp):
|
|
|
|
# return True
|
|
|
|
# return False
|
|
|
|
|
|
|
|
def separate_pos_imgs(self, img, sort_priority, gap=102):
|
|
|
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
|
|
|
|
components = []
|
|
|
|
for label in range(1, num_labels):
|
|
|
|
component = np.zeros_like(img)
|
|
|
|
component[labels == label] = 255
|
|
|
|
components.append((component, centroids[label]))
|
2024-01-21 16:25:50 +01:00
|
|
|
if sort_priority == "y":
|
2024-01-21 05:30:49 +01:00
|
|
|
fir, sec = 1, 0 # top-down first
|
2024-01-21 16:25:50 +01:00
|
|
|
elif sort_priority == "x":
|
2024-01-21 05:30:49 +01:00
|
|
|
fir, sec = 0, 1 # left-right first
|
|
|
|
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap))
|
|
|
|
sorted_components = [c[0] for c in components]
|
|
|
|
return sorted_components
|
|
|
|
|
|
|
|
def find_polygon(self, image, min_rect=False):
|
|
|
|
contours, hierarchy = cv2.findContours(
|
|
|
|
image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
|
|
)
|
|
|
|
max_contour = max(contours, key=cv2.contourArea) # get contour with max area
|
|
|
|
if min_rect:
|
|
|
|
# get minimum enclosing rectangle
|
|
|
|
rect = cv2.minAreaRect(max_contour)
|
|
|
|
poly = np.int0(cv2.boxPoints(rect))
|
|
|
|
else:
|
|
|
|
# get approximate polygon
|
|
|
|
epsilon = 0.01 * cv2.arcLength(max_contour, True)
|
|
|
|
poly = cv2.approxPolyDP(max_contour, epsilon, True)
|
|
|
|
n, _, xy = poly.shape
|
|
|
|
poly = poly.reshape(n, xy)
|
|
|
|
cv2.drawContours(image, [poly], -1, 255, -1)
|
|
|
|
return poly, image
|
|
|
|
|
|
|
|
def arr2tensor(self, arr, bs):
|
|
|
|
arr = np.transpose(arr, (2, 0, 1))
|
|
|
|
_arr = torch.from_numpy(arr.copy()).float().to(self.device)
|
|
|
|
if self.use_fp16:
|
|
|
|
_arr = _arr.half()
|
|
|
|
_arr = torch.stack([_arr for _ in range(bs)], dim=0)
|
|
|
|
return _arr
|