2023-11-20 06:05:28 +01:00
|
|
|
import os
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from lama_cleaner.const import Config
|
|
|
|
from lama_cleaner.helper import (
|
|
|
|
load_jit_model,
|
|
|
|
download_model,
|
|
|
|
get_cache_path_by_url,
|
|
|
|
boxes_from_mask,
|
|
|
|
resize_max_size,
|
|
|
|
norm_img,
|
|
|
|
)
|
|
|
|
from lama_cleaner.model.base import InpaintModel
|
|
|
|
|
|
|
|
MIGAN_MODEL_URL = os.environ.get(
|
|
|
|
"MIGAN_MODEL_URL",
|
|
|
|
"/Users/cwq/code/github/MI-GAN/exported_models/migan_places512/models/migan_traced.pt",
|
|
|
|
)
|
|
|
|
MIGAN_MODEL_MD5 = os.environ.get("MIGAN_MODEL_MD5", "76eb3b1a71c400ee3290524f7a11b89c")
|
|
|
|
|
|
|
|
|
|
|
|
class MIGAN(InpaintModel):
|
|
|
|
name = "migan"
|
|
|
|
min_size = 512
|
|
|
|
pad_mod = 512
|
|
|
|
pad_to_square = True
|
2023-12-01 03:15:35 +01:00
|
|
|
is_erase_model = True
|
2023-11-20 06:05:28 +01:00
|
|
|
|
|
|
|
def init_model(self, device, **kwargs):
|
|
|
|
self.model = load_jit_model(MIGAN_MODEL_URL, device, MIGAN_MODEL_MD5).eval()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def download():
|
|
|
|
download_model(MIGAN_MODEL_URL, MIGAN_MODEL_MD5)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_downloaded() -> bool:
|
|
|
|
return os.path.exists(get_cache_path_by_url(MIGAN_MODEL_URL))
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def __call__(self, image, mask, config: Config):
|
|
|
|
"""
|
|
|
|
images: [H, W, C] RGB, not normalized
|
|
|
|
masks: [H, W]
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
if image.shape[0] == 512 and image.shape[1] == 512:
|
|
|
|
return self._pad_forward(image, mask, config)
|
|
|
|
|
|
|
|
boxes = boxes_from_mask(mask)
|
|
|
|
crop_result = []
|
|
|
|
config.hd_strategy_crop_margin = 128
|
|
|
|
for box in boxes:
|
|
|
|
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
|
|
|
|
origin_size = crop_image.shape[:2]
|
|
|
|
resize_image = resize_max_size(crop_image, size_limit=512)
|
|
|
|
resize_mask = resize_max_size(crop_mask, size_limit=512)
|
|
|
|
inpaint_result = self._pad_forward(resize_image, resize_mask, config)
|
|
|
|
|
|
|
|
# only paste masked area result
|
|
|
|
inpaint_result = cv2.resize(
|
|
|
|
inpaint_result,
|
|
|
|
(origin_size[1], origin_size[0]),
|
|
|
|
interpolation=cv2.INTER_CUBIC,
|
|
|
|
)
|
|
|
|
|
|
|
|
original_pixel_indices = crop_mask < 127
|
|
|
|
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][
|
|
|
|
original_pixel_indices
|
|
|
|
]
|
|
|
|
|
|
|
|
crop_result.append((inpaint_result, crop_box))
|
|
|
|
|
|
|
|
inpaint_result = image[:, :, ::-1]
|
|
|
|
for crop_image, crop_box in crop_result:
|
|
|
|
x1, y1, x2, y2 = crop_box
|
|
|
|
inpaint_result[y1:y2, x1:x2, :] = crop_image
|
|
|
|
|
|
|
|
return inpaint_result
|
|
|
|
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
|
|
"""Input images and output images have same size
|
|
|
|
images: [H, W, C] RGB
|
|
|
|
masks: [H, W] mask area == 255
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
|
|
|
|
image = norm_img(image) # [0, 1]
|
|
|
|
image = image * 2 - 1 # [0, 1] -> [-1, 1]
|
|
|
|
mask = (mask > 120) * 255
|
|
|
|
mask = norm_img(mask)
|
|
|
|
|
|
|
|
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
|
|
|
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
|
|
|
|
|
|
|
erased_img = image * (1 - mask)
|
|
|
|
input_image = torch.cat([0.5 - mask, erased_img], dim=1)
|
|
|
|
|
|
|
|
output = self.model(input_image)
|
|
|
|
output = (
|
|
|
|
(output.permute(0, 2, 3, 1) * 127.5 + 127.5)
|
|
|
|
.round()
|
|
|
|
.clamp(0, 255)
|
|
|
|
.to(torch.uint8)
|
|
|
|
)
|
|
|
|
output = output[0].cpu().numpy()
|
|
|
|
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
|
|
return cur_res
|