263 lines
7.7 KiB
Python
263 lines
7.7 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import logging
|
||
|
|
||
|
import torch
|
||
|
from pathlib import Path
|
||
|
|
||
|
from .modeling.backbones.hieradet import Hiera
|
||
|
from .modeling.backbones.image_encoder import ImageEncoder, FpnNeck
|
||
|
from .modeling.memory_attention import MemoryAttention, MemoryAttentionLayer
|
||
|
from .modeling.memory_encoder import MemoryEncoder, MaskDownSampler, Fuser, CXBlock
|
||
|
from .modeling.position_encoding import PositionEmbeddingSine
|
||
|
from .modeling.sam.transformer import RoPEAttention
|
||
|
from .modeling.sam2_base import SAM2Base
|
||
|
|
||
|
CURRENT_DIR = Path(__file__).parent
|
||
|
CONFIG_DIR = CURRENT_DIR / "sam2_configs"
|
||
|
|
||
|
common_kwargs = dict(
|
||
|
num_maskmem=7,
|
||
|
image_size=1024,
|
||
|
sigmoid_scale_for_mem_enc=20.0,
|
||
|
sigmoid_bias_for_mem_enc=-10.0,
|
||
|
use_mask_input_as_output_without_sam=True,
|
||
|
directly_add_no_mem_embed=True,
|
||
|
use_high_res_features_in_sam=True,
|
||
|
multimask_output_in_sam=True,
|
||
|
iou_prediction_use_sigmoid=True,
|
||
|
use_obj_ptrs_in_encoder=True,
|
||
|
add_tpos_enc_to_obj_ptrs=False,
|
||
|
only_obj_ptrs_in_the_past_for_eval=True,
|
||
|
pred_obj_scores=True,
|
||
|
pred_obj_scores_mlp=True,
|
||
|
fixed_no_obj_ptr=True,
|
||
|
multimask_output_for_tracking=True,
|
||
|
use_multimask_token_for_obj_ptr=True,
|
||
|
multimask_min_pt_num=0,
|
||
|
multimask_max_pt_num=1,
|
||
|
use_mlp_for_obj_ptr_proj=True,
|
||
|
compile_image_encoder=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_memory_attention():
|
||
|
return MemoryAttention(
|
||
|
d_model=256,
|
||
|
pos_enc_at_input=True,
|
||
|
layer=MemoryAttentionLayer(
|
||
|
activation="relu",
|
||
|
dim_feedforward=2048,
|
||
|
dropout=0.1,
|
||
|
pos_enc_at_attn=False,
|
||
|
self_attention=RoPEAttention(
|
||
|
rope_theta=10000.0,
|
||
|
feat_sizes=[32, 32],
|
||
|
embedding_dim=256,
|
||
|
num_heads=1,
|
||
|
downsample_rate=1,
|
||
|
dropout=0.1,
|
||
|
),
|
||
|
d_model=256,
|
||
|
pos_enc_at_cross_attn_keys=True,
|
||
|
pos_enc_at_cross_attn_queries=False,
|
||
|
cross_attention=RoPEAttention(
|
||
|
rope_theta=10000.0,
|
||
|
feat_sizes=[32, 32],
|
||
|
embedding_dim=256,
|
||
|
num_heads=1,
|
||
|
downsample_rate=1,
|
||
|
dropout=0.1,
|
||
|
kv_in_dim=64,
|
||
|
),
|
||
|
),
|
||
|
num_layers=4,
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_memory_encoder():
|
||
|
return MemoryEncoder(
|
||
|
out_dim=64,
|
||
|
position_encoding=PositionEmbeddingSine(
|
||
|
num_pos_feats=64, normalize=True, scale=None, temperature=10000
|
||
|
),
|
||
|
mask_downsampler=MaskDownSampler(
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
),
|
||
|
fuser=Fuser(
|
||
|
layer=CXBlock(
|
||
|
dim=256,
|
||
|
kernel_size=7,
|
||
|
padding=3,
|
||
|
layer_scale_init_value=1e-6,
|
||
|
use_dwconv=True,
|
||
|
),
|
||
|
num_layers=2,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_sam2_tiny():
|
||
|
return SAM2Base(
|
||
|
**common_kwargs,
|
||
|
image_encoder=ImageEncoder(
|
||
|
scalp=1,
|
||
|
trunk=Hiera(
|
||
|
embed_dim=96,
|
||
|
num_heads=1,
|
||
|
stages=(1, 2, 7, 2),
|
||
|
global_att_blocks=(5, 7, 9),
|
||
|
window_pos_embed_bkg_spatial_size=(7, 7),
|
||
|
window_spec=(8, 4, 14, 7),
|
||
|
),
|
||
|
neck=FpnNeck(
|
||
|
position_encoding=PositionEmbeddingSine(
|
||
|
num_pos_feats=256,
|
||
|
normalize=True,
|
||
|
scale=None,
|
||
|
temperature=10000,
|
||
|
),
|
||
|
d_model=256,
|
||
|
backbone_channel_list=[768, 384, 192, 96],
|
||
|
fpn_top_down_levels=[2, 3],
|
||
|
fpn_interp_model="nearest",
|
||
|
),
|
||
|
),
|
||
|
memory_attention=build_memory_attention(),
|
||
|
memory_encoder=build_memory_encoder(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_sam2_small():
|
||
|
return SAM2Base(
|
||
|
**common_kwargs,
|
||
|
image_encoder=ImageEncoder(
|
||
|
scalp=1,
|
||
|
trunk=Hiera(
|
||
|
embed_dim=96,
|
||
|
num_heads=1,
|
||
|
stages=(1, 2, 11, 2),
|
||
|
global_att_blocks=(7, 10, 13),
|
||
|
window_pos_embed_bkg_spatial_size=(7, 7),
|
||
|
window_spec=(8, 4, 14, 7),
|
||
|
),
|
||
|
neck=FpnNeck(
|
||
|
position_encoding=PositionEmbeddingSine(
|
||
|
num_pos_feats=256,
|
||
|
normalize=True,
|
||
|
scale=None,
|
||
|
temperature=10000,
|
||
|
),
|
||
|
d_model=256,
|
||
|
backbone_channel_list=[768, 384, 192, 96],
|
||
|
fpn_top_down_levels=[2, 3],
|
||
|
fpn_interp_model="nearest",
|
||
|
),
|
||
|
),
|
||
|
memory_attention=build_memory_attention(),
|
||
|
memory_encoder=build_memory_encoder(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_sam2_base():
|
||
|
return SAM2Base(
|
||
|
**common_kwargs,
|
||
|
image_encoder=ImageEncoder(
|
||
|
scalp=1,
|
||
|
trunk=Hiera(
|
||
|
embed_dim=112,
|
||
|
num_heads=2,
|
||
|
stages=(2, 3, 16, 3),
|
||
|
global_att_blocks=(12, 16, 20),
|
||
|
window_pos_embed_bkg_spatial_size=(14, 14),
|
||
|
window_spec=(8, 4, 14, 7),
|
||
|
),
|
||
|
neck=FpnNeck(
|
||
|
position_encoding=PositionEmbeddingSine(
|
||
|
num_pos_feats=256,
|
||
|
normalize=True,
|
||
|
scale=None,
|
||
|
temperature=10000,
|
||
|
),
|
||
|
d_model=256,
|
||
|
backbone_channel_list=[896, 448, 224, 112],
|
||
|
fpn_top_down_levels=[2, 3],
|
||
|
fpn_interp_model="nearest",
|
||
|
),
|
||
|
),
|
||
|
memory_attention=build_memory_attention(),
|
||
|
memory_encoder=build_memory_encoder(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_sam2_large():
|
||
|
return SAM2Base(
|
||
|
**common_kwargs,
|
||
|
image_encoder=ImageEncoder(
|
||
|
scalp=1,
|
||
|
trunk=Hiera(
|
||
|
embed_dim=144,
|
||
|
num_heads=2,
|
||
|
stages=(2, 6, 36, 4),
|
||
|
global_att_blocks=(23, 33, 43),
|
||
|
window_pos_embed_bkg_spatial_size=(7, 7),
|
||
|
window_spec=(8, 4, 16, 8),
|
||
|
),
|
||
|
neck=FpnNeck(
|
||
|
position_encoding=PositionEmbeddingSine(
|
||
|
num_pos_feats=256,
|
||
|
normalize=True,
|
||
|
scale=None,
|
||
|
temperature=10000,
|
||
|
),
|
||
|
d_model=256,
|
||
|
backbone_channel_list=[1152, 576, 288, 144],
|
||
|
fpn_top_down_levels=[2, 3],
|
||
|
fpn_interp_model="nearest",
|
||
|
),
|
||
|
),
|
||
|
memory_attention=build_memory_attention(),
|
||
|
memory_encoder=build_memory_encoder(),
|
||
|
)
|
||
|
|
||
|
|
||
|
sam2_model_registry = {
|
||
|
"sam2_tiny": build_sam2_tiny,
|
||
|
"sam2_small": build_sam2_small,
|
||
|
"sam2_base": build_sam2_base,
|
||
|
"sam2_large": build_sam2_large,
|
||
|
}
|
||
|
|
||
|
|
||
|
def build_sam2(
|
||
|
name,
|
||
|
ckpt_path=None,
|
||
|
device="cuda",
|
||
|
mode="eval",
|
||
|
):
|
||
|
model = sam2_model_registry[name]()
|
||
|
_load_checkpoint(model, ckpt_path)
|
||
|
model = model.to(device)
|
||
|
if mode == "eval":
|
||
|
model.eval()
|
||
|
return model
|
||
|
|
||
|
|
||
|
def _load_checkpoint(model, ckpt_path):
|
||
|
if ckpt_path is not None:
|
||
|
sd = torch.load(ckpt_path, map_location="cpu")["model"]
|
||
|
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
||
|
if missing_keys:
|
||
|
logging.error(missing_keys)
|
||
|
raise RuntimeError()
|
||
|
if unexpected_keys:
|
||
|
logging.error(unexpected_keys)
|
||
|
raise RuntimeError()
|
||
|
logging.info("Loaded checkpoint sucessfully")
|