38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
|
from pathlib import Path
|
||
|
|
||
|
import pytest
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
from lama_cleaner.interactive_seg import InteractiveSeg, Click
|
||
|
|
||
|
current_dir = Path(__file__).parent.absolute().resolve()
|
||
|
save_dir = current_dir / 'result'
|
||
|
save_dir.mkdir(exist_ok=True, parents=True)
|
||
|
img_p = current_dir / "overture-creations-5sI6fQgYIuo.png"
|
||
|
|
||
|
|
||
|
def test_interactive_seg():
|
||
|
interactive_seg_model = InteractiveSeg()
|
||
|
img = cv2.imread(str(img_p))
|
||
|
pred = interactive_seg_model(img, clicks=[Click(coords=(256, 256), indx=0, is_positive=True)])
|
||
|
cv2.imwrite(str(save_dir / "test_interactive_seg.png"), pred)
|
||
|
|
||
|
|
||
|
def test_interactive_seg_with_negative_click():
|
||
|
interactive_seg_model = InteractiveSeg()
|
||
|
img = cv2.imread(str(img_p))
|
||
|
pred = interactive_seg_model(img, clicks=[
|
||
|
Click(coords=(256, 256), indx=0, is_positive=True),
|
||
|
Click(coords=(384, 256), indx=1, is_positive=False)
|
||
|
])
|
||
|
cv2.imwrite(str(save_dir / "test_interactive_seg_negative.png"), pred)
|
||
|
|
||
|
|
||
|
def test_interactive_seg_with_prev_mask():
|
||
|
interactive_seg_model = InteractiveSeg()
|
||
|
img = cv2.imread(str(img_p))
|
||
|
mask = np.zeros_like(img)[:, :, 0]
|
||
|
pred = interactive_seg_model(img, clicks=[Click(coords=(256, 256), indx=0, is_positive=True)], prev_mask=mask)
|
||
|
cv2.imwrite(str(save_dir / "test_interactive_seg_with_mask.png"), pred)
|