2022-12-10 15:06:15 +01:00
|
|
|
import random
|
|
|
|
|
|
|
|
import PIL
|
|
|
|
import PIL.Image
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from diffusers import DiffusionPipeline
|
2023-01-05 15:07:39 +01:00
|
|
|
from loguru import logger
|
|
|
|
|
|
|
|
from lama_cleaner.helper import resize_max_size
|
2022-12-10 15:06:15 +01:00
|
|
|
from lama_cleaner.model.base import InpaintModel
|
|
|
|
from lama_cleaner.schema import Config
|
|
|
|
|
|
|
|
|
|
|
|
class PaintByExample(InpaintModel):
|
|
|
|
pad_mod = 8
|
|
|
|
min_size = 512
|
|
|
|
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
2023-01-05 15:07:39 +01:00
|
|
|
fp16 = not kwargs.get('no_half', False)
|
2022-12-10 15:06:15 +01:00
|
|
|
use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
|
2023-01-03 14:30:33 +01:00
|
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
2023-01-05 15:07:39 +01:00
|
|
|
model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)}
|
2022-12-10 15:06:15 +01:00
|
|
|
self.model = DiffusionPipeline.from_pretrained(
|
|
|
|
"Fantasy-Studio/Paint-by-Example",
|
|
|
|
torch_dtype=torch_dtype,
|
2023-01-05 15:07:39 +01:00
|
|
|
**model_kwargs
|
2022-12-10 15:06:15 +01:00
|
|
|
)
|
|
|
|
self.model = self.model.to(device)
|
2023-01-05 15:07:39 +01:00
|
|
|
self.model.enable_attention_slicing()
|
|
|
|
# TODO: gpu_id
|
|
|
|
if kwargs.get('cpu_offload', False) and torch.cuda.is_available():
|
|
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
2022-12-10 15:06:15 +01:00
|
|
|
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
|
|
"""Input image and output image have same size
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
seed = config.paint_by_example_seed
|
|
|
|
random.seed(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
|
|
|
|
output = self.model(
|
|
|
|
image=PIL.Image.fromarray(image),
|
|
|
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
|
|
|
|
example_image=config.paint_by_example_example_image,
|
|
|
|
num_inference_steps=config.paint_by_example_steps,
|
|
|
|
output_type='np.array',
|
|
|
|
).images[0]
|
|
|
|
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
|
|
return output
|
|
|
|
|
2023-01-05 15:07:39 +01:00
|
|
|
def _scaled_pad_forward(self, image, mask, config: Config):
|
|
|
|
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
|
|
|
|
origin_size = image.shape[:2]
|
|
|
|
downsize_image = resize_max_size(image, size_limit=longer_side_length)
|
|
|
|
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
|
|
|
|
logger.info(
|
|
|
|
f"Resize image to do paint_by_example: {image.shape} -> {downsize_image.shape}"
|
|
|
|
)
|
|
|
|
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
|
|
|
|
# only paste masked area result
|
|
|
|
inpaint_result = cv2.resize(
|
|
|
|
inpaint_result,
|
|
|
|
(origin_size[1], origin_size[0]),
|
|
|
|
interpolation=cv2.INTER_CUBIC,
|
|
|
|
)
|
|
|
|
original_pixel_indices = mask < 127
|
|
|
|
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
|
|
|
return inpaint_result
|
|
|
|
|
2022-12-10 15:06:15 +01:00
|
|
|
@torch.no_grad()
|
|
|
|
def __call__(self, image, mask, config: Config):
|
|
|
|
"""
|
|
|
|
images: [H, W, C] RGB, not normalized
|
|
|
|
masks: [H, W]
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
if config.use_croper:
|
|
|
|
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
|
2023-01-05 15:07:39 +01:00
|
|
|
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
|
2022-12-10 15:06:15 +01:00
|
|
|
inpaint_result = image[:, :, ::-1]
|
|
|
|
inpaint_result[t:b, l:r, :] = crop_image
|
|
|
|
else:
|
2023-01-05 15:07:39 +01:00
|
|
|
inpaint_result = self._scaled_pad_forward(image, mask, config)
|
2022-12-10 15:06:15 +01:00
|
|
|
|
|
|
|
return inpaint_result
|
|
|
|
|
|
|
|
def forward_post_process(self, result, image, mask, config):
|
|
|
|
if config.paint_by_example_match_histograms:
|
|
|
|
result = self._match_histograms(result, image[:, :, ::-1], mask)
|
|
|
|
|
|
|
|
if config.paint_by_example_mask_blur != 0:
|
|
|
|
k = 2 * config.paint_by_example_mask_blur + 1
|
|
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)
|
|
|
|
return result, image, mask
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_downloaded() -> bool:
|
|
|
|
# model will be downloaded when app start, and can't switch in frontend settings
|
|
|
|
return True
|