2022-04-15 18:11:51 +02:00
|
|
|
import os
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
2023-02-14 02:08:56 +01:00
|
|
|
from lama_cleaner.helper import (
|
|
|
|
norm_img,
|
|
|
|
get_cache_path_by_url,
|
|
|
|
load_jit_model,
|
|
|
|
)
|
2022-04-15 18:11:51 +02:00
|
|
|
from lama_cleaner.model.base import InpaintModel
|
|
|
|
from lama_cleaner.schema import Config
|
|
|
|
|
|
|
|
LAMA_MODEL_URL = os.environ.get(
|
|
|
|
"LAMA_MODEL_URL",
|
|
|
|
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
|
|
|
)
|
2023-02-26 02:19:48 +01:00
|
|
|
LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500")
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
|
|
|
|
class LaMa(InpaintModel):
|
2023-02-11 06:30:09 +01:00
|
|
|
name = "lama"
|
2022-04-15 18:11:51 +02:00
|
|
|
pad_mod = 8
|
|
|
|
|
2022-09-15 16:21:27 +02:00
|
|
|
def init_model(self, device, **kwargs):
|
2023-02-26 02:19:48 +01:00
|
|
|
self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval()
|
2022-04-17 17:31:12 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_downloaded() -> bool:
|
|
|
|
return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL))
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
def forward(self, image, mask, config: Config):
|
|
|
|
"""Input image and output image have same size
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W]
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
image = norm_img(image)
|
|
|
|
mask = norm_img(mask)
|
|
|
|
|
|
|
|
mask = (mask > 0) * 1
|
|
|
|
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
|
|
|
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
|
|
|
|
|
|
|
inpainted_image = self.model(image, mask)
|
|
|
|
|
|
|
|
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
|
|
|
|
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
|
|
|
|
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
|
|
|
|
return cur_res
|