296 lines
8.9 KiB
Python
296 lines
8.9 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
from functools import partial
|
||
|
from typing import List, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from ..backbones.utils import (
|
||
|
PatchEmbed,
|
||
|
window_partition,
|
||
|
window_unpartition,
|
||
|
)
|
||
|
|
||
|
from ..sam2_utils import DropPath, MLP
|
||
|
|
||
|
|
||
|
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
||
|
if pool is None:
|
||
|
return x
|
||
|
# (B, H, W, C) -> (B, C, H, W)
|
||
|
x = x.permute(0, 3, 1, 2)
|
||
|
x = pool(x)
|
||
|
# (B, C, H', W') -> (B, H', W', C)
|
||
|
x = x.permute(0, 2, 3, 1)
|
||
|
if norm:
|
||
|
x = norm(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class MultiScaleAttention(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dim: int,
|
||
|
dim_out: int,
|
||
|
num_heads: int,
|
||
|
q_pool: nn.Module = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.dim = dim
|
||
|
self.dim_out = dim_out
|
||
|
|
||
|
self.num_heads = num_heads
|
||
|
head_dim = dim_out // num_heads
|
||
|
self.scale = head_dim**-0.5
|
||
|
|
||
|
self.q_pool = q_pool
|
||
|
self.qkv = nn.Linear(dim, dim_out * 3)
|
||
|
self.proj = nn.Linear(dim_out, dim_out)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
B, H, W, _ = x.shape
|
||
|
# qkv with shape (B, H * W, 3, nHead, C)
|
||
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
||
|
# q, k, v with shape (B, H * W, nheads, C)
|
||
|
q, k, v = torch.unbind(qkv, 2)
|
||
|
|
||
|
# Q pooling (for downsample at stage changes)
|
||
|
if self.q_pool:
|
||
|
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
||
|
H, W = q.shape[1:3] # downsampled shape
|
||
|
q = q.reshape(B, H * W, self.num_heads, -1)
|
||
|
|
||
|
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
||
|
x = F.scaled_dot_product_attention(
|
||
|
q.transpose(1, 2),
|
||
|
k.transpose(1, 2),
|
||
|
v.transpose(1, 2),
|
||
|
)
|
||
|
# Transpose back
|
||
|
x = x.transpose(1, 2)
|
||
|
x = x.reshape(B, H, W, -1)
|
||
|
|
||
|
x = self.proj(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class MultiScaleBlock(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dim: int,
|
||
|
dim_out: int,
|
||
|
num_heads: int,
|
||
|
mlp_ratio: float = 4.0,
|
||
|
drop_path: float = 0.0,
|
||
|
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
||
|
q_stride: Tuple[int, int] = None,
|
||
|
act_layer: nn.Module = nn.GELU,
|
||
|
window_size: int = 0,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
if isinstance(norm_layer, str):
|
||
|
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
||
|
|
||
|
self.dim = dim
|
||
|
self.dim_out = dim_out
|
||
|
self.norm1 = norm_layer(dim)
|
||
|
|
||
|
self.window_size = window_size
|
||
|
|
||
|
self.pool, self.q_stride = None, q_stride
|
||
|
if self.q_stride:
|
||
|
self.pool = nn.MaxPool2d(
|
||
|
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
||
|
)
|
||
|
|
||
|
self.attn = MultiScaleAttention(
|
||
|
dim,
|
||
|
dim_out,
|
||
|
num_heads=num_heads,
|
||
|
q_pool=self.pool,
|
||
|
)
|
||
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||
|
|
||
|
self.norm2 = norm_layer(dim_out)
|
||
|
self.mlp = MLP(
|
||
|
dim_out,
|
||
|
int(dim_out * mlp_ratio),
|
||
|
dim_out,
|
||
|
num_layers=2,
|
||
|
activation=act_layer,
|
||
|
)
|
||
|
|
||
|
if dim != dim_out:
|
||
|
self.proj = nn.Linear(dim, dim_out)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
shortcut = x # B, H, W, C
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
# Skip connection
|
||
|
if self.dim != self.dim_out:
|
||
|
shortcut = do_pool(self.proj(x), self.pool)
|
||
|
|
||
|
# Window partition
|
||
|
window_size = self.window_size
|
||
|
if window_size > 0:
|
||
|
H, W = x.shape[1], x.shape[2]
|
||
|
x, pad_hw = window_partition(x, window_size)
|
||
|
|
||
|
# Window Attention + Q Pooling (if stage change)
|
||
|
x = self.attn(x)
|
||
|
if self.q_stride:
|
||
|
# Shapes have changed due to Q pooling
|
||
|
window_size = self.window_size // self.q_stride[0]
|
||
|
H, W = shortcut.shape[1:3]
|
||
|
|
||
|
pad_h = (window_size - H % window_size) % window_size
|
||
|
pad_w = (window_size - W % window_size) % window_size
|
||
|
pad_hw = (H + pad_h, W + pad_w)
|
||
|
|
||
|
# Reverse window partition
|
||
|
if self.window_size > 0:
|
||
|
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
||
|
|
||
|
x = shortcut + self.drop_path(x)
|
||
|
# MLP
|
||
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Hiera(nn.Module):
|
||
|
"""
|
||
|
Reference: https://arxiv.org/abs/2306.00989
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int = 96, # initial embed dim
|
||
|
num_heads: int = 1, # initial number of heads
|
||
|
drop_path_rate: float = 0.0, # stochastic depth
|
||
|
q_pool: int = 3, # number of q_pool stages
|
||
|
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
||
|
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
||
|
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
||
|
head_mul: float = 2.0, # head_mul factor at stage shift
|
||
|
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
||
|
# window size per stage, when not using global att.
|
||
|
window_spec: Tuple[int, ...] = (
|
||
|
8,
|
||
|
4,
|
||
|
14,
|
||
|
7,
|
||
|
),
|
||
|
# global attn in these blocks
|
||
|
global_att_blocks: Tuple[int, ...] = (
|
||
|
12,
|
||
|
16,
|
||
|
20,
|
||
|
),
|
||
|
return_interm_layers=True, # return feats from every stage
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
assert len(stages) == len(window_spec)
|
||
|
self.window_spec = window_spec
|
||
|
|
||
|
depth = sum(stages)
|
||
|
self.q_stride = q_stride
|
||
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
||
|
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
||
|
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
||
|
self.return_interm_layers = return_interm_layers
|
||
|
|
||
|
self.patch_embed = PatchEmbed(
|
||
|
embed_dim=embed_dim,
|
||
|
)
|
||
|
# Which blocks have global att?
|
||
|
self.global_att_blocks = global_att_blocks
|
||
|
|
||
|
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
||
|
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
||
|
self.pos_embed = nn.Parameter(
|
||
|
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
||
|
)
|
||
|
self.pos_embed_window = nn.Parameter(
|
||
|
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
||
|
)
|
||
|
|
||
|
dpr = [
|
||
|
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
||
|
] # stochastic depth decay rule
|
||
|
|
||
|
cur_stage = 1
|
||
|
self.blocks = nn.ModuleList()
|
||
|
|
||
|
for i in range(depth):
|
||
|
dim_out = embed_dim
|
||
|
# lags by a block, so first block of
|
||
|
# next stage uses an initial window size
|
||
|
# of previous stage and final window size of current stage
|
||
|
window_size = self.window_spec[cur_stage - 1]
|
||
|
|
||
|
if self.global_att_blocks is not None:
|
||
|
window_size = 0 if i in self.global_att_blocks else window_size
|
||
|
|
||
|
if i - 1 in self.stage_ends:
|
||
|
dim_out = int(embed_dim * dim_mul)
|
||
|
num_heads = int(num_heads * head_mul)
|
||
|
cur_stage += 1
|
||
|
|
||
|
block = MultiScaleBlock(
|
||
|
dim=embed_dim,
|
||
|
dim_out=dim_out,
|
||
|
num_heads=num_heads,
|
||
|
drop_path=dpr[i],
|
||
|
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
||
|
window_size=window_size,
|
||
|
)
|
||
|
|
||
|
embed_dim = dim_out
|
||
|
self.blocks.append(block)
|
||
|
|
||
|
self.channel_list = (
|
||
|
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
||
|
if return_interm_layers
|
||
|
else [self.blocks[-1].dim_out]
|
||
|
)
|
||
|
|
||
|
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
||
|
h, w = hw
|
||
|
window_embed = self.pos_embed_window
|
||
|
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
||
|
pos_embed = pos_embed + window_embed.tile(
|
||
|
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
||
|
)
|
||
|
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
||
|
return pos_embed
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||
|
x = self.patch_embed(x)
|
||
|
# x: (B, H, W, C)
|
||
|
|
||
|
# Add pos embed
|
||
|
x = x + self._get_pos_embed(x.shape[1:3])
|
||
|
|
||
|
outputs = []
|
||
|
for i, blk in enumerate(self.blocks):
|
||
|
x = blk(x)
|
||
|
if (i == self.stage_ends[-1]) or (
|
||
|
i in self.stage_ends and self.return_interm_layers
|
||
|
):
|
||
|
feats = x.permute(0, 3, 1, 2)
|
||
|
outputs.append(feats)
|
||
|
|
||
|
return outputs
|