32 lines
1.3 KiB
Python
32 lines
1.3 KiB
Python
|
import torch
|
||
|
from copy import deepcopy
|
||
|
|
||
|
from ..utils import load_file_from_url
|
||
|
from .retinaface import RetinaFace
|
||
|
|
||
|
|
||
|
def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None):
|
||
|
if model_name == 'retinaface_resnet50':
|
||
|
model = RetinaFace(network_name='resnet50', half=half, device=device)
|
||
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
|
||
|
elif model_name == 'retinaface_mobile0.25':
|
||
|
model = RetinaFace(network_name='mobile0.25', half=half, device=device)
|
||
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
|
||
|
else:
|
||
|
raise NotImplementedError(f'{model_name} is not implemented.')
|
||
|
|
||
|
model_path = load_file_from_url(
|
||
|
url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
|
||
|
|
||
|
# TODO: clean pretrained model
|
||
|
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
||
|
# remove unnecessary 'module.'
|
||
|
for k, v in deepcopy(load_net).items():
|
||
|
if k.startswith('module.'):
|
||
|
load_net[k[7:]] = v
|
||
|
load_net.pop(k)
|
||
|
model.load_state_dict(load_net, strict=True)
|
||
|
model.eval()
|
||
|
model = model.to(device)
|
||
|
return model
|