446 lines
19 KiB
Python
446 lines
19 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import logging
|
||
|
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from PIL.Image import Image
|
||
|
|
||
|
from .modeling.sam2_base import SAM2Base
|
||
|
|
||
|
from .utils.transforms import SAM2Transforms
|
||
|
|
||
|
|
||
|
class SAM2ImagePredictor:
|
||
|
def __init__(
|
||
|
self,
|
||
|
sam_model: SAM2Base,
|
||
|
mask_threshold=0.0,
|
||
|
max_hole_area=0.0,
|
||
|
max_sprinkle_area=0.0,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Uses SAM-2 to calculate the image embedding for an image, and then
|
||
|
allow repeated, efficient mask prediction given prompts.
|
||
|
|
||
|
Arguments:
|
||
|
sam_model (Sam-2): The model to use for mask prediction.
|
||
|
mask_threshold (float): The threshold to use when converting mask logits
|
||
|
to binary masks. Masks are thresholded at 0 by default.
|
||
|
fill_hole_area (int): If fill_hole_area > 0, we fill small holes in up to
|
||
|
the maximum area of fill_hole_area in low_res_masks.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.model = sam_model
|
||
|
self._transforms = SAM2Transforms(
|
||
|
resolution=self.model.image_size,
|
||
|
mask_threshold=mask_threshold,
|
||
|
max_hole_area=max_hole_area,
|
||
|
max_sprinkle_area=max_sprinkle_area,
|
||
|
)
|
||
|
|
||
|
# Predictor state
|
||
|
self._is_image_set = False
|
||
|
self._features = None
|
||
|
self._orig_hw = None
|
||
|
# Whether the predictor is set for single image or a batch of images
|
||
|
self._is_batch = False
|
||
|
|
||
|
# Predictor config
|
||
|
self.mask_threshold = mask_threshold
|
||
|
|
||
|
# Spatial dim for backbone feature maps
|
||
|
self._bb_feat_sizes = [
|
||
|
(256, 256),
|
||
|
(128, 128),
|
||
|
(64, 64),
|
||
|
]
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def set_image(
|
||
|
self,
|
||
|
image: Union[np.ndarray, Image],
|
||
|
) -> None:
|
||
|
"""
|
||
|
Calculates the image embeddings for the provided image, allowing
|
||
|
masks to be predicted with the 'predict' method.
|
||
|
|
||
|
Arguments:
|
||
|
image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
|
||
|
with pixel values in [0, 255].
|
||
|
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||
|
"""
|
||
|
self.reset_predictor()
|
||
|
# Transform the image to the form expected by the model
|
||
|
if isinstance(image, np.ndarray):
|
||
|
logging.info("For numpy array image, we assume (HxWxC) format")
|
||
|
self._orig_hw = [image.shape[:2]]
|
||
|
elif isinstance(image, Image):
|
||
|
w, h = image.size
|
||
|
self._orig_hw = [(h, w)]
|
||
|
else:
|
||
|
raise NotImplementedError("Image format not supported")
|
||
|
|
||
|
input_image = self._transforms(image)
|
||
|
input_image = input_image[None, ...].to(self.device)
|
||
|
|
||
|
assert (
|
||
|
len(input_image.shape) == 4 and input_image.shape[1] == 3
|
||
|
), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
|
||
|
logging.info("Computing image embeddings for the provided image...")
|
||
|
backbone_out = self.model.forward_image(input_image)
|
||
|
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
||
|
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
||
|
if self.model.directly_add_no_mem_embed:
|
||
|
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
||
|
|
||
|
feats = [
|
||
|
feat.permute(1, 2, 0).view(1, -1, *feat_size)
|
||
|
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
||
|
][::-1]
|
||
|
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
||
|
self._is_image_set = True
|
||
|
logging.info("Image embeddings computed.")
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def set_image_batch(
|
||
|
self,
|
||
|
image_list: List[Union[np.ndarray]],
|
||
|
) -> None:
|
||
|
"""
|
||
|
Calculates the image embeddings for the provided image batch, allowing
|
||
|
masks to be predicted with the 'predict_batch' method.
|
||
|
|
||
|
Arguments:
|
||
|
image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
|
||
|
with pixel values in [0, 255].
|
||
|
"""
|
||
|
self.reset_predictor()
|
||
|
assert isinstance(image_list, list)
|
||
|
self._orig_hw = []
|
||
|
for image in image_list:
|
||
|
assert isinstance(
|
||
|
image, np.ndarray
|
||
|
), "Images are expected to be an np.ndarray in RGB format, and of shape HWC"
|
||
|
self._orig_hw.append(image.shape[:2])
|
||
|
# Transform the image to the form expected by the model
|
||
|
img_batch = self._transforms.forward_batch(image_list)
|
||
|
img_batch = img_batch.to(self.device)
|
||
|
batch_size = img_batch.shape[0]
|
||
|
assert (
|
||
|
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
||
|
), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
||
|
logging.info("Computing image embeddings for the provided images...")
|
||
|
backbone_out = self.model.forward_image(img_batch)
|
||
|
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
||
|
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
||
|
if self.model.directly_add_no_mem_embed:
|
||
|
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
||
|
|
||
|
feats = [
|
||
|
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
||
|
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
||
|
][::-1]
|
||
|
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
||
|
self._is_image_set = True
|
||
|
self._is_batch = True
|
||
|
logging.info("Image embeddings computed.")
|
||
|
|
||
|
def predict_batch(
|
||
|
self,
|
||
|
point_coords_batch: List[np.ndarray] = None,
|
||
|
point_labels_batch: List[np.ndarray] = None,
|
||
|
box_batch: List[np.ndarray] = None,
|
||
|
mask_input_batch: List[np.ndarray] = None,
|
||
|
multimask_output: bool = True,
|
||
|
return_logits: bool = False,
|
||
|
normalize_coords=True,
|
||
|
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
|
||
|
"""This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
|
||
|
It returns a tupele of lists of masks, ious, and low_res_masks_logits.
|
||
|
"""
|
||
|
assert self._is_batch, "This function should only be used when in batched mode"
|
||
|
if not self._is_image_set:
|
||
|
raise RuntimeError(
|
||
|
"An image must be set with .set_image_batch(...) before mask prediction."
|
||
|
)
|
||
|
num_images = len(self._features["image_embed"])
|
||
|
all_masks = []
|
||
|
all_ious = []
|
||
|
all_low_res_masks = []
|
||
|
for img_idx in range(num_images):
|
||
|
# Transform input prompts
|
||
|
point_coords = (
|
||
|
point_coords_batch[img_idx] if point_coords_batch is not None else None
|
||
|
)
|
||
|
point_labels = (
|
||
|
point_labels_batch[img_idx] if point_labels_batch is not None else None
|
||
|
)
|
||
|
box = box_batch[img_idx] if box_batch is not None else None
|
||
|
mask_input = (
|
||
|
mask_input_batch[img_idx] if mask_input_batch is not None else None
|
||
|
)
|
||
|
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
||
|
point_coords,
|
||
|
point_labels,
|
||
|
box,
|
||
|
mask_input,
|
||
|
normalize_coords,
|
||
|
img_idx=img_idx,
|
||
|
)
|
||
|
masks, iou_predictions, low_res_masks = self._predict(
|
||
|
unnorm_coords,
|
||
|
labels,
|
||
|
unnorm_box,
|
||
|
mask_input,
|
||
|
multimask_output,
|
||
|
return_logits=return_logits,
|
||
|
img_idx=img_idx,
|
||
|
)
|
||
|
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
||
|
iou_predictions_np = (
|
||
|
iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
||
|
)
|
||
|
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
||
|
all_masks.append(masks_np)
|
||
|
all_ious.append(iou_predictions_np)
|
||
|
all_low_res_masks.append(low_res_masks_np)
|
||
|
|
||
|
return all_masks, all_ious, all_low_res_masks
|
||
|
|
||
|
def predict(
|
||
|
self,
|
||
|
point_coords: Optional[np.ndarray] = None,
|
||
|
point_labels: Optional[np.ndarray] = None,
|
||
|
box: Optional[np.ndarray] = None,
|
||
|
mask_input: Optional[np.ndarray] = None,
|
||
|
multimask_output: bool = True,
|
||
|
return_logits: bool = False,
|
||
|
normalize_coords=True,
|
||
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||
|
"""
|
||
|
Predict masks for the given input prompts, using the currently set image.
|
||
|
|
||
|
Arguments:
|
||
|
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||
|
model. Each point is in (X,Y) in pixels.
|
||
|
point_labels (np.ndarray or None): A length N array of labels for the
|
||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||
|
background point.
|
||
|
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||
|
model, in XYXY format.
|
||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||
|
coming from a previous prediction iteration. Has form 1xHxW, where
|
||
|
for SAM, H=W=256.
|
||
|
multimask_output (bool): If true, the model will return three masks.
|
||
|
For ambiguous input prompts (such as a single click), this will often
|
||
|
produce better masks than a single prediction. If only a single
|
||
|
mask is needed, the model's predicted quality score can be used
|
||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||
|
input prompts, multimask_output=False can give better results.
|
||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||
|
instead of a binary mask.
|
||
|
normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
|
||
|
|
||
|
Returns:
|
||
|
(np.ndarray): The output masks in CxHxW format, where C is the
|
||
|
number of masks, and (H, W) is the original image size.
|
||
|
(np.ndarray): An array of length C containing the model's
|
||
|
predictions for the quality of each mask.
|
||
|
(np.ndarray): An array of shape CxHxW, where C is the number
|
||
|
of masks and H=W=256. These low resolution logits can be passed to
|
||
|
a subsequent iteration as mask input.
|
||
|
"""
|
||
|
if not self._is_image_set:
|
||
|
raise RuntimeError(
|
||
|
"An image must be set with .set_image(...) before mask prediction."
|
||
|
)
|
||
|
|
||
|
# Transform input prompts
|
||
|
|
||
|
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
||
|
point_coords, point_labels, box, mask_input, normalize_coords
|
||
|
)
|
||
|
|
||
|
masks, iou_predictions, low_res_masks = self._predict(
|
||
|
unnorm_coords,
|
||
|
labels,
|
||
|
unnorm_box,
|
||
|
mask_input,
|
||
|
multimask_output,
|
||
|
return_logits=return_logits,
|
||
|
)
|
||
|
|
||
|
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
||
|
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
||
|
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
||
|
return masks_np, iou_predictions_np, low_res_masks_np
|
||
|
|
||
|
def _prep_prompts(
|
||
|
self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
|
||
|
):
|
||
|
unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
|
||
|
if point_coords is not None:
|
||
|
assert (
|
||
|
point_labels is not None
|
||
|
), "point_labels must be supplied if point_coords is supplied."
|
||
|
point_coords = torch.as_tensor(
|
||
|
point_coords, dtype=torch.float, device=self.device
|
||
|
)
|
||
|
unnorm_coords = self._transforms.transform_coords(
|
||
|
point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
||
|
)
|
||
|
labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
||
|
if len(unnorm_coords.shape) == 2:
|
||
|
unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
|
||
|
if box is not None:
|
||
|
box = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||
|
unnorm_box = self._transforms.transform_boxes(
|
||
|
box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
||
|
) # Bx2x2
|
||
|
if mask_logits is not None:
|
||
|
mask_input = torch.as_tensor(
|
||
|
mask_logits, dtype=torch.float, device=self.device
|
||
|
)
|
||
|
if len(mask_input.shape) == 3:
|
||
|
mask_input = mask_input[None, :, :, :]
|
||
|
return mask_input, unnorm_coords, labels, unnorm_box
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def _predict(
|
||
|
self,
|
||
|
point_coords: Optional[torch.Tensor],
|
||
|
point_labels: Optional[torch.Tensor],
|
||
|
boxes: Optional[torch.Tensor] = None,
|
||
|
mask_input: Optional[torch.Tensor] = None,
|
||
|
multimask_output: bool = True,
|
||
|
return_logits: bool = False,
|
||
|
img_idx: int = -1,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Predict masks for the given input prompts, using the currently set image.
|
||
|
Input prompts are batched torch tensors and are expected to already be
|
||
|
transformed to the input frame using SAM2Transforms.
|
||
|
|
||
|
Arguments:
|
||
|
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||
|
model. Each point is in (X,Y) in pixels.
|
||
|
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||
|
background point.
|
||
|
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
||
|
model, in XYXY format.
|
||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||
|
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||
|
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||
|
predict method do not need further transformation.
|
||
|
multimask_output (bool): If true, the model will return three masks.
|
||
|
For ambiguous input prompts (such as a single click), this will often
|
||
|
produce better masks than a single prediction. If only a single
|
||
|
mask is needed, the model's predicted quality score can be used
|
||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||
|
input prompts, multimask_output=False can give better results.
|
||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||
|
instead of a binary mask.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||
|
number of masks, and (H, W) is the original image size.
|
||
|
(torch.Tensor): An array of shape BxC containing the model's
|
||
|
predictions for the quality of each mask.
|
||
|
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||
|
of masks and H=W=256. These low res logits can be passed to
|
||
|
a subsequent iteration as mask input.
|
||
|
"""
|
||
|
if not self._is_image_set:
|
||
|
raise RuntimeError(
|
||
|
"An image must be set with .set_image(...) before mask prediction."
|
||
|
)
|
||
|
|
||
|
if point_coords is not None:
|
||
|
concat_points = (point_coords, point_labels)
|
||
|
else:
|
||
|
concat_points = None
|
||
|
|
||
|
# Embed prompts
|
||
|
if boxes is not None:
|
||
|
box_coords = boxes.reshape(-1, 2, 2)
|
||
|
box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
|
||
|
box_labels = box_labels.repeat(boxes.size(0), 1)
|
||
|
# we merge "boxes" and "points" into a single "concat_points" input (where
|
||
|
# boxes are added at the beginning) to sam_prompt_encoder
|
||
|
if concat_points is not None:
|
||
|
concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
|
||
|
concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
|
||
|
concat_points = (concat_coords, concat_labels)
|
||
|
else:
|
||
|
concat_points = (box_coords, box_labels)
|
||
|
|
||
|
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
|
||
|
points=concat_points,
|
||
|
boxes=None,
|
||
|
masks=mask_input,
|
||
|
)
|
||
|
|
||
|
# Predict masks
|
||
|
batched_mode = (
|
||
|
concat_points is not None and concat_points[0].shape[0] > 1
|
||
|
) # multi object prediction
|
||
|
high_res_features = [
|
||
|
feat_level[img_idx].unsqueeze(0)
|
||
|
for feat_level in self._features["high_res_feats"]
|
||
|
]
|
||
|
low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
|
||
|
image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
|
||
|
image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
|
||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||
|
dense_prompt_embeddings=dense_embeddings,
|
||
|
multimask_output=multimask_output,
|
||
|
repeat_image=batched_mode,
|
||
|
high_res_features=high_res_features,
|
||
|
)
|
||
|
|
||
|
# Upscale the masks to the original image resolution
|
||
|
masks = self._transforms.postprocess_masks(
|
||
|
low_res_masks, self._orig_hw[img_idx]
|
||
|
)
|
||
|
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
|
||
|
if not return_logits:
|
||
|
masks = masks > self.mask_threshold
|
||
|
|
||
|
return masks, iou_predictions, low_res_masks
|
||
|
|
||
|
def get_image_embedding(self) -> torch.Tensor:
|
||
|
"""
|
||
|
Returns the image embeddings for the currently set image, with
|
||
|
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||
|
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||
|
"""
|
||
|
if not self._is_image_set:
|
||
|
raise RuntimeError(
|
||
|
"An image must be set with .set_image(...) to generate an embedding."
|
||
|
)
|
||
|
assert (
|
||
|
self._features is not None
|
||
|
), "Features must exist if an image has been set."
|
||
|
return self._features["image_embed"]
|
||
|
|
||
|
@property
|
||
|
def device(self) -> torch.device:
|
||
|
return self.model.device
|
||
|
|
||
|
def reset_predictor(self) -> None:
|
||
|
"""
|
||
|
Resets the image embeddings and other state variables.
|
||
|
"""
|
||
|
self._is_image_set = False
|
||
|
self._features = None
|
||
|
self._orig_hw = None
|
||
|
self._is_batch = False
|