2022-04-18 09:01:10 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import io
|
|
|
|
import logging
|
|
|
|
import multiprocessing
|
|
|
|
import os
|
2022-09-15 16:21:27 +02:00
|
|
|
import random
|
2022-04-18 09:01:10 +02:00
|
|
|
import time
|
|
|
|
import imghdr
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
from loguru import logger
|
|
|
|
|
|
|
|
from lama_cleaner.model_manager import ModelManager
|
|
|
|
from lama_cleaner.schema import Config
|
|
|
|
|
|
|
|
try:
|
|
|
|
torch._C._jit_override_can_fuse_on_cpu(False)
|
|
|
|
torch._C._jit_override_can_fuse_on_gpu(False)
|
|
|
|
torch._C._jit_set_texpr_fuser_enabled(False)
|
|
|
|
torch._C._jit_set_nvfuser_enabled(False)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
2022-09-20 16:43:20 +02:00
|
|
|
from flask import Flask, request, send_file, cli, make_response
|
2022-04-18 16:54:34 +02:00
|
|
|
|
2022-04-18 15:30:49 +02:00
|
|
|
# Disable ability for Flask to display warning about using a development server in a production environment.
|
|
|
|
# https://gist.github.com/jerblack/735b9953ba1ab6234abb43174210d356
|
|
|
|
cli.show_server_banner = lambda *_: None
|
2022-04-18 09:01:10 +02:00
|
|
|
from flask_cors import CORS
|
|
|
|
|
|
|
|
from lama_cleaner.helper import (
|
|
|
|
load_img,
|
|
|
|
numpy_to_bytes,
|
|
|
|
resize_max_size,
|
|
|
|
)
|
|
|
|
|
|
|
|
NUM_THREADS = str(multiprocessing.cpu_count())
|
|
|
|
|
2022-07-26 03:22:27 +02:00
|
|
|
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
|
2022-09-15 16:21:27 +02:00
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
2022-07-26 03:22:27 +02:00
|
|
|
|
2022-04-18 09:01:10 +02:00
|
|
|
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
|
|
|
|
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
|
|
|
|
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
|
|
|
|
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
|
|
|
|
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
|
|
|
|
if os.environ.get("CACHE_DIR"):
|
|
|
|
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
|
|
|
|
|
|
|
|
BUILD_DIR = os.environ.get("LAMA_CLEANER_BUILD_DIR", "app/build")
|
|
|
|
|
|
|
|
|
2022-04-18 09:29:29 +02:00
|
|
|
class NoFlaskwebgui(logging.Filter):
|
|
|
|
def filter(self, record):
|
2022-04-18 16:54:34 +02:00
|
|
|
return "GET //flaskwebgui-keep-server-alive" not in record.getMessage()
|
2022-04-18 09:01:10 +02:00
|
|
|
|
|
|
|
|
2022-04-18 09:29:29 +02:00
|
|
|
logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
|
|
|
|
|
2022-04-18 09:01:10 +02:00
|
|
|
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
|
|
|
|
app.config["JSON_AS_ASCII"] = False
|
|
|
|
CORS(app, expose_headers=["Content-Disposition"])
|
2022-09-15 16:21:27 +02:00
|
|
|
# MAX_BUFFER_SIZE = 50 * 1000 * 1000 # 50 MB
|
|
|
|
# async_mode 优先级: eventlet/gevent_uwsgi/gevent/threading
|
|
|
|
# only threading works on macOS
|
|
|
|
# socketio = SocketIO(app, max_http_buffer_size=MAX_BUFFER_SIZE, async_mode='threading')
|
2022-04-18 09:01:10 +02:00
|
|
|
|
|
|
|
model: ModelManager = None
|
|
|
|
device = None
|
|
|
|
input_image_path: str = None
|
|
|
|
|
|
|
|
|
|
|
|
def get_image_ext(img_bytes):
|
|
|
|
w = imghdr.what("", img_bytes)
|
|
|
|
if w is None:
|
|
|
|
w = "jpeg"
|
|
|
|
return w
|
|
|
|
|
|
|
|
|
2022-09-15 16:21:27 +02:00
|
|
|
def diffuser_callback(step: int):
|
|
|
|
pass
|
|
|
|
# socketio.emit('diffusion_step', {'diffusion_step': step})
|
|
|
|
|
|
|
|
|
2022-04-18 09:01:10 +02:00
|
|
|
@app.route("/inpaint", methods=["POST"])
|
|
|
|
def process():
|
|
|
|
input = request.files
|
|
|
|
# RGB
|
|
|
|
origin_image_bytes = input["image"].read()
|
|
|
|
|
|
|
|
image, alpha_channel = load_img(origin_image_bytes)
|
|
|
|
original_shape = image.shape
|
|
|
|
interpolation = cv2.INTER_CUBIC
|
|
|
|
|
|
|
|
form = request.form
|
|
|
|
size_limit: Union[int, str] = form.get("sizeLimit", "1080")
|
|
|
|
if size_limit == "Original":
|
|
|
|
size_limit = max(image.shape)
|
|
|
|
else:
|
|
|
|
size_limit = int(size_limit)
|
|
|
|
|
|
|
|
config = Config(
|
2022-04-18 16:54:34 +02:00
|
|
|
ldm_steps=form["ldmSteps"],
|
2022-06-12 07:14:17 +02:00
|
|
|
ldm_sampler=form["ldmSampler"],
|
2022-04-18 16:54:34 +02:00
|
|
|
hd_strategy=form["hdStrategy"],
|
2022-07-13 03:04:28 +02:00
|
|
|
zits_wireframe=form["zitsWireframe"],
|
2022-04-18 16:54:34 +02:00
|
|
|
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
|
|
|
|
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
|
|
|
|
hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
|
2022-09-20 16:43:20 +02:00
|
|
|
prompt=form["prompt"],
|
|
|
|
use_croper=form["useCroper"],
|
|
|
|
croper_x=form["croperX"],
|
|
|
|
croper_y=form["croperY"],
|
|
|
|
croper_height=form["croperHeight"],
|
|
|
|
croper_width=form["croperWidth"],
|
2022-09-22 15:50:41 +02:00
|
|
|
sd_mask_blur=form["sdMaskBlur"],
|
2022-09-15 16:21:27 +02:00
|
|
|
sd_strength=form["sdStrength"],
|
|
|
|
sd_steps=form["sdSteps"],
|
|
|
|
sd_guidance_scale=form["sdGuidanceScale"],
|
|
|
|
sd_sampler=form["sdSampler"],
|
|
|
|
sd_seed=form["sdSeed"],
|
2022-04-18 09:01:10 +02:00
|
|
|
)
|
|
|
|
|
2022-09-15 16:21:27 +02:00
|
|
|
if config.sd_seed == -1:
|
|
|
|
config.sd_seed = random.randint(1, 9999999)
|
|
|
|
|
2022-04-18 09:01:10 +02:00
|
|
|
logger.info(f"Origin image shape: {original_shape}")
|
|
|
|
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
|
|
|
logger.info(f"Resized image shape: {image.shape}")
|
|
|
|
|
|
|
|
mask, _ = load_img(input["mask"].read(), gray=True)
|
|
|
|
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
|
|
|
|
|
|
|
start = time.time()
|
|
|
|
res_np_img = model(image, mask, config)
|
|
|
|
logger.info(f"process time: {(time.time() - start) * 1000}ms")
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
if alpha_channel is not None:
|
|
|
|
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
|
|
|
|
alpha_channel = cv2.resize(
|
|
|
|
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
|
|
|
)
|
|
|
|
res_np_img = np.concatenate(
|
|
|
|
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
|
|
|
)
|
|
|
|
|
|
|
|
ext = get_image_ext(origin_image_bytes)
|
2022-09-20 16:43:20 +02:00
|
|
|
|
|
|
|
response = make_response(
|
|
|
|
send_file(
|
|
|
|
io.BytesIO(numpy_to_bytes(res_np_img, ext)),
|
|
|
|
mimetype=f"image/{ext}",
|
|
|
|
)
|
2022-04-18 09:01:10 +02:00
|
|
|
)
|
2022-09-20 16:43:20 +02:00
|
|
|
response.headers["X-Seed"] = str(config.sd_seed)
|
|
|
|
return response
|
2022-04-18 09:01:10 +02:00
|
|
|
|
|
|
|
|
|
|
|
@app.route("/model")
|
|
|
|
def current_model():
|
|
|
|
return model.name, 200
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/model_downloaded/<name>")
|
|
|
|
def model_downloaded(name):
|
|
|
|
return str(model.is_downloaded(name)), 200
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/model", methods=["POST"])
|
|
|
|
def switch_model():
|
|
|
|
new_name = request.form.get("name")
|
|
|
|
if new_name == model.name:
|
|
|
|
return "Same model", 200
|
|
|
|
|
|
|
|
try:
|
|
|
|
model.switch(new_name)
|
|
|
|
except NotImplementedError:
|
|
|
|
return f"{new_name} not implemented", 403
|
|
|
|
return f"ok, switch to {new_name}", 200
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/")
|
|
|
|
def index():
|
|
|
|
return send_file(os.path.join(BUILD_DIR, "index.html"))
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/inputimage")
|
|
|
|
def set_input_photo():
|
|
|
|
if input_image_path:
|
|
|
|
with open(input_image_path, "rb") as f:
|
|
|
|
image_in_bytes = f.read()
|
|
|
|
return send_file(
|
|
|
|
input_image_path,
|
|
|
|
as_attachment=True,
|
2022-04-18 16:54:34 +02:00
|
|
|
attachment_filename=Path(input_image_path).name,
|
2022-04-18 09:01:10 +02:00
|
|
|
mimetype=f"image/{get_image_ext(image_in_bytes)}",
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
return "No Input Image"
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
global model
|
|
|
|
global device
|
|
|
|
global input_image_path
|
|
|
|
|
|
|
|
device = torch.device(args.device)
|
|
|
|
input_image_path = args.input
|
|
|
|
|
2022-09-20 16:43:20 +02:00
|
|
|
model = ModelManager(
|
|
|
|
name=args.model,
|
|
|
|
device=device,
|
|
|
|
hf_access_token=args.hf_access_token,
|
2022-09-29 03:42:19 +02:00
|
|
|
sd_disable_nsfw=args.sd_disable_nsfw,
|
2022-09-29 06:20:55 +02:00
|
|
|
sd_cpu_textencoder=args.sd_cpu_textencoder,
|
2022-09-29 07:13:09 +02:00
|
|
|
sd_run_local=args.sd_run_local,
|
2022-09-20 16:43:20 +02:00
|
|
|
callbacks=[diffuser_callback],
|
|
|
|
)
|
2022-04-18 09:01:10 +02:00
|
|
|
|
|
|
|
if args.gui:
|
|
|
|
app_width, app_height = args.gui_size
|
|
|
|
from flaskwebgui import FlaskUI
|
2022-04-18 16:54:34 +02:00
|
|
|
|
|
|
|
ui = FlaskUI(
|
|
|
|
app, width=app_width, height=app_height, host=args.host, port=args.port
|
|
|
|
)
|
2022-04-18 16:28:47 +02:00
|
|
|
ui.run()
|
2022-04-18 09:01:10 +02:00
|
|
|
else:
|
2022-09-15 16:21:27 +02:00
|
|
|
# TODO: socketio
|
2022-04-18 09:01:10 +02:00
|
|
|
app.run(host=args.host, port=args.port, debug=args.debug)
|