2024-01-21 16:25:50 +01:00
|
|
|
import torch
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
from iopaint.const import ANYTEXT_NAME
|
|
|
|
from iopaint.model.anytext.anytext_pipeline import AnyTextPipeline
|
|
|
|
from iopaint.model.base import DiffusionInpaintModel
|
|
|
|
from iopaint.model.utils import get_torch_dtype, is_local_files_only
|
|
|
|
from iopaint.schema import InpaintRequest
|
|
|
|
|
|
|
|
|
|
|
|
class AnyText(DiffusionInpaintModel):
|
|
|
|
name = ANYTEXT_NAME
|
|
|
|
pad_mod = 64
|
|
|
|
is_erase_model = False
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def download(local_files_only=False):
|
|
|
|
hf_hub_download(
|
|
|
|
repo_id=ANYTEXT_NAME,
|
|
|
|
filename="model_index.json",
|
|
|
|
local_files_only=local_files_only,
|
|
|
|
)
|
|
|
|
ckpt_path = hf_hub_download(
|
|
|
|
repo_id=ANYTEXT_NAME,
|
|
|
|
filename="pytorch_model.fp16.safetensors",
|
|
|
|
local_files_only=local_files_only,
|
|
|
|
)
|
|
|
|
font_path = hf_hub_download(
|
|
|
|
repo_id=ANYTEXT_NAME,
|
|
|
|
filename="SourceHanSansSC-Medium.otf",
|
|
|
|
local_files_only=local_files_only,
|
|
|
|
)
|
|
|
|
return ckpt_path, font_path
|
|
|
|
|
|
|
|
def init_model(self, device, **kwargs):
|
|
|
|
local_files_only = is_local_files_only(**kwargs)
|
|
|
|
ckpt_path, font_path = self.download(local_files_only)
|
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
|
|
|
self.model = AnyTextPipeline(
|
|
|
|
ckpt_path=ckpt_path,
|
|
|
|
font_path=font_path,
|
|
|
|
device=device,
|
|
|
|
use_fp16=torch_dtype == torch.float16,
|
|
|
|
)
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
|
|
|
|
def forward(self, image, mask, config: InpaintRequest):
|
|
|
|
"""Input image and output image have same size
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1] 255 means area to inpainting
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
height, width = image.shape[:2]
|
|
|
|
mask = mask.astype("float32") / 255.0
|
|
|
|
masked_image = image * (1 - mask)
|
|
|
|
|
|
|
|
# list of rgb ndarray
|
|
|
|
results, rtn_code, rtn_warning = self.model(
|
|
|
|
image=image,
|
|
|
|
masked_image=masked_image,
|
|
|
|
prompt=config.prompt,
|
|
|
|
negative_prompt=config.negative_prompt,
|
|
|
|
num_inference_steps=config.sd_steps,
|
|
|
|
strength=config.sd_strength,
|
|
|
|
guidance_scale=config.sd_guidance_scale,
|
|
|
|
height=height,
|
|
|
|
width=width,
|
|
|
|
seed=config.sd_seed,
|
|
|
|
sort_priority="y",
|
|
|
|
callback=self.callback
|
|
|
|
)
|
|
|
|
inpainted_rgb_image = results[0][..., ::-1]
|
|
|
|
return inpainted_rgb_image
|