361 lines
10 KiB
Python
361 lines
10 KiB
Python
|
from inspect import isfunction
|
||
|
import math
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch import nn, einsum
|
||
|
from einops import rearrange, repeat
|
||
|
from typing import Optional, Any
|
||
|
|
||
|
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import checkpoint
|
||
|
|
||
|
|
||
|
# CrossAttn precision handling
|
||
|
import os
|
||
|
|
||
|
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
||
|
|
||
|
|
||
|
def exists(val):
|
||
|
return val is not None
|
||
|
|
||
|
|
||
|
def uniq(arr):
|
||
|
return {el: True for el in arr}.keys()
|
||
|
|
||
|
|
||
|
def default(val, d):
|
||
|
if exists(val):
|
||
|
return val
|
||
|
return d() if isfunction(d) else d
|
||
|
|
||
|
|
||
|
def max_neg_value(t):
|
||
|
return -torch.finfo(t.dtype).max
|
||
|
|
||
|
|
||
|
def init_(tensor):
|
||
|
dim = tensor.shape[-1]
|
||
|
std = 1 / math.sqrt(dim)
|
||
|
tensor.uniform_(-std, std)
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
# feedforward
|
||
|
class GEGLU(nn.Module):
|
||
|
def __init__(self, dim_in, dim_out):
|
||
|
super().__init__()
|
||
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
||
|
return x * F.gelu(gate)
|
||
|
|
||
|
|
||
|
class FeedForward(nn.Module):
|
||
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||
|
super().__init__()
|
||
|
inner_dim = int(dim * mult)
|
||
|
dim_out = default(dim_out, dim)
|
||
|
project_in = (
|
||
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
||
|
if not glu
|
||
|
else GEGLU(dim, inner_dim)
|
||
|
)
|
||
|
|
||
|
self.net = nn.Sequential(
|
||
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.net(x)
|
||
|
|
||
|
|
||
|
def zero_module(module):
|
||
|
"""
|
||
|
Zero out the parameters of a module and return it.
|
||
|
"""
|
||
|
for p in module.parameters():
|
||
|
p.detach().zero_()
|
||
|
return module
|
||
|
|
||
|
|
||
|
def Normalize(in_channels):
|
||
|
return torch.nn.GroupNorm(
|
||
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
||
|
)
|
||
|
|
||
|
|
||
|
class SpatialSelfAttention(nn.Module):
|
||
|
def __init__(self, in_channels):
|
||
|
super().__init__()
|
||
|
self.in_channels = in_channels
|
||
|
|
||
|
self.norm = Normalize(in_channels)
|
||
|
self.q = torch.nn.Conv2d(
|
||
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||
|
)
|
||
|
self.k = torch.nn.Conv2d(
|
||
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||
|
)
|
||
|
self.v = torch.nn.Conv2d(
|
||
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||
|
)
|
||
|
self.proj_out = torch.nn.Conv2d(
|
||
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
h_ = x
|
||
|
h_ = self.norm(h_)
|
||
|
q = self.q(h_)
|
||
|
k = self.k(h_)
|
||
|
v = self.v(h_)
|
||
|
|
||
|
# compute attention
|
||
|
b, c, h, w = q.shape
|
||
|
q = rearrange(q, "b c h w -> b (h w) c")
|
||
|
k = rearrange(k, "b c h w -> b c (h w)")
|
||
|
w_ = torch.einsum("bij,bjk->bik", q, k)
|
||
|
|
||
|
w_ = w_ * (int(c) ** (-0.5))
|
||
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||
|
|
||
|
# attend to values
|
||
|
v = rearrange(v, "b c h w -> b c (h w)")
|
||
|
w_ = rearrange(w_, "b i j -> b j i")
|
||
|
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
||
|
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
||
|
h_ = self.proj_out(h_)
|
||
|
|
||
|
return x + h_
|
||
|
|
||
|
|
||
|
class CrossAttention(nn.Module):
|
||
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
||
|
super().__init__()
|
||
|
inner_dim = dim_head * heads
|
||
|
context_dim = default(context_dim, query_dim)
|
||
|
|
||
|
self.scale = dim_head**-0.5
|
||
|
self.heads = heads
|
||
|
|
||
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||
|
|
||
|
self.to_out = nn.Sequential(
|
||
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
||
|
)
|
||
|
|
||
|
def forward(self, x, context=None, mask=None):
|
||
|
h = self.heads
|
||
|
|
||
|
q = self.to_q(x)
|
||
|
context = default(context, x)
|
||
|
k = self.to_k(context)
|
||
|
v = self.to_v(context)
|
||
|
|
||
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
||
|
|
||
|
# force cast to fp32 to avoid overflowing
|
||
|
if _ATTN_PRECISION == "fp32":
|
||
|
with torch.autocast(enabled=False, device_type="cuda"):
|
||
|
q, k = q.float(), k.float()
|
||
|
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
||
|
else:
|
||
|
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
||
|
|
||
|
del q, k
|
||
|
|
||
|
if exists(mask):
|
||
|
mask = rearrange(mask, "b ... -> b (...)")
|
||
|
max_neg_value = -torch.finfo(sim.dtype).max
|
||
|
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
||
|
sim.masked_fill_(~mask, max_neg_value)
|
||
|
|
||
|
# attention, what we cannot get enough of
|
||
|
sim = sim.softmax(dim=-1)
|
||
|
|
||
|
out = einsum("b i j, b j d -> b i d", sim, v)
|
||
|
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
||
|
return self.to_out(out)
|
||
|
|
||
|
|
||
|
class SDPACrossAttention(CrossAttention):
|
||
|
def forward(self, x, context=None, mask=None):
|
||
|
batch_size, sequence_length, inner_dim = x.shape
|
||
|
|
||
|
if mask is not None:
|
||
|
mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
|
||
|
mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
|
||
|
|
||
|
h = self.heads
|
||
|
q_in = self.to_q(x)
|
||
|
context = default(context, x)
|
||
|
|
||
|
k_in = self.to_k(context)
|
||
|
v_in = self.to_v(context)
|
||
|
|
||
|
head_dim = inner_dim // h
|
||
|
q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
|
||
|
k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
|
||
|
v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
|
||
|
|
||
|
del q_in, k_in, v_in
|
||
|
|
||
|
dtype = q.dtype
|
||
|
if _ATTN_PRECISION == "fp32":
|
||
|
q, k, v = q.float(), k.float(), v.float()
|
||
|
|
||
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||
|
hidden_states = torch.nn.functional.scaled_dot_product_attention(
|
||
|
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
|
||
|
)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(1, 2).reshape(
|
||
|
batch_size, -1, h * head_dim
|
||
|
)
|
||
|
hidden_states = hidden_states.to(dtype)
|
||
|
|
||
|
# linear proj
|
||
|
hidden_states = self.to_out[0](hidden_states)
|
||
|
# dropout
|
||
|
hidden_states = self.to_out[1](hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BasicTransformerBlock(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dim,
|
||
|
n_heads,
|
||
|
d_head,
|
||
|
dropout=0.0,
|
||
|
context_dim=None,
|
||
|
gated_ff=True,
|
||
|
checkpoint=True,
|
||
|
disable_self_attn=False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||
|
attn_cls = SDPACrossAttention
|
||
|
else:
|
||
|
attn_cls = CrossAttention
|
||
|
|
||
|
self.disable_self_attn = disable_self_attn
|
||
|
self.attn1 = attn_cls(
|
||
|
query_dim=dim,
|
||
|
heads=n_heads,
|
||
|
dim_head=d_head,
|
||
|
dropout=dropout,
|
||
|
context_dim=context_dim if self.disable_self_attn else None,
|
||
|
) # is a self-attention if not self.disable_self_attn
|
||
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||
|
self.attn2 = attn_cls(
|
||
|
query_dim=dim,
|
||
|
context_dim=context_dim,
|
||
|
heads=n_heads,
|
||
|
dim_head=d_head,
|
||
|
dropout=dropout,
|
||
|
) # is self-attn if context is none
|
||
|
self.norm1 = nn.LayerNorm(dim)
|
||
|
self.norm2 = nn.LayerNorm(dim)
|
||
|
self.norm3 = nn.LayerNorm(dim)
|
||
|
self.checkpoint = checkpoint
|
||
|
|
||
|
def forward(self, x, context=None):
|
||
|
return checkpoint(
|
||
|
self._forward, (x, context), self.parameters(), self.checkpoint
|
||
|
)
|
||
|
|
||
|
def _forward(self, x, context=None):
|
||
|
x = (
|
||
|
self.attn1(
|
||
|
self.norm1(x), context=context if self.disable_self_attn else None
|
||
|
)
|
||
|
+ x
|
||
|
)
|
||
|
x = self.attn2(self.norm2(x), context=context) + x
|
||
|
x = self.ff(self.norm3(x)) + x
|
||
|
return x
|
||
|
|
||
|
|
||
|
class SpatialTransformer(nn.Module):
|
||
|
"""
|
||
|
Transformer block for image-like data.
|
||
|
First, project the input (aka embedding)
|
||
|
and reshape to b, t, d.
|
||
|
Then apply standard transformer action.
|
||
|
Finally, reshape to image
|
||
|
NEW: use_linear for more efficiency instead of the 1x1 convs
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
n_heads,
|
||
|
d_head,
|
||
|
depth=1,
|
||
|
dropout=0.0,
|
||
|
context_dim=None,
|
||
|
disable_self_attn=False,
|
||
|
use_linear=False,
|
||
|
use_checkpoint=True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
if exists(context_dim) and not isinstance(context_dim, list):
|
||
|
context_dim = [context_dim]
|
||
|
self.in_channels = in_channels
|
||
|
inner_dim = n_heads * d_head
|
||
|
self.norm = Normalize(in_channels)
|
||
|
if not use_linear:
|
||
|
self.proj_in = nn.Conv2d(
|
||
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
||
|
)
|
||
|
else:
|
||
|
self.proj_in = nn.Linear(in_channels, inner_dim)
|
||
|
|
||
|
self.transformer_blocks = nn.ModuleList(
|
||
|
[
|
||
|
BasicTransformerBlock(
|
||
|
inner_dim,
|
||
|
n_heads,
|
||
|
d_head,
|
||
|
dropout=dropout,
|
||
|
context_dim=context_dim[d],
|
||
|
disable_self_attn=disable_self_attn,
|
||
|
checkpoint=use_checkpoint,
|
||
|
)
|
||
|
for d in range(depth)
|
||
|
]
|
||
|
)
|
||
|
if not use_linear:
|
||
|
self.proj_out = zero_module(
|
||
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
||
|
)
|
||
|
else:
|
||
|
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
||
|
self.use_linear = use_linear
|
||
|
|
||
|
def forward(self, x, context=None):
|
||
|
# note: if no context is given, cross-attention defaults to self-attention
|
||
|
if not isinstance(context, list):
|
||
|
context = [context]
|
||
|
b, c, h, w = x.shape
|
||
|
x_in = x
|
||
|
x = self.norm(x)
|
||
|
if not self.use_linear:
|
||
|
x = self.proj_in(x)
|
||
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
||
|
if self.use_linear:
|
||
|
x = self.proj_in(x)
|
||
|
for i, block in enumerate(self.transformer_blocks):
|
||
|
x = block(x, context=context[i])
|
||
|
if self.use_linear:
|
||
|
x = self.proj_out(x)
|
||
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
||
|
if not self.use_linear:
|
||
|
x = self.proj_out(x)
|
||
|
return x + x_in
|