2023-12-28 03:48:52 +01:00
|
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
2024-01-02 07:34:36 +01:00
|
|
|
from lama_cleaner.helper import encode_pil_to_base64
|
2023-12-30 16:36:44 +01:00
|
|
|
from lama_cleaner.schema import LDMSampler, HDStrategy, InpaintRequest, SDSampler
|
2024-01-02 07:34:36 +01:00
|
|
|
from PIL import Image
|
2023-12-28 03:48:52 +01:00
|
|
|
|
|
|
|
current_dir = Path(__file__).parent.absolute().resolve()
|
|
|
|
save_dir = current_dir / "result"
|
|
|
|
save_dir.mkdir(exist_ok=True, parents=True)
|
|
|
|
|
|
|
|
|
|
|
|
def check_device(device: str) -> int:
|
|
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
|
|
pytest.skip("CUDA is not available, skip test on cuda")
|
|
|
|
if device == "mps" and not torch.backends.mps.is_available():
|
|
|
|
pytest.skip("mps is not available, skip test on mps")
|
|
|
|
steps = 1 if device == "cpu" else 20
|
|
|
|
return steps
|
|
|
|
|
|
|
|
|
|
|
|
def assert_equal(
|
|
|
|
model,
|
2024-01-02 07:34:36 +01:00
|
|
|
config: InpaintRequest,
|
2023-12-28 03:48:52 +01:00
|
|
|
gt_name,
|
|
|
|
fx: float = 1,
|
|
|
|
fy: float = 1,
|
|
|
|
img_p=current_dir / "image.png",
|
|
|
|
mask_p=current_dir / "mask.png",
|
|
|
|
):
|
|
|
|
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
|
2024-01-02 07:34:36 +01:00
|
|
|
config.image = encode_pil_to_base64(Image.fromarray(img), 95, {})[0]
|
|
|
|
config.mask = encode_pil_to_base64(Image.fromarray(mask), 95, {})[0]
|
2023-12-28 03:48:52 +01:00
|
|
|
print(f"Input image shape: {img.shape}")
|
|
|
|
res = model(img, mask, config)
|
|
|
|
ok = cv2.imwrite(
|
|
|
|
str(save_dir / gt_name),
|
|
|
|
res,
|
|
|
|
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
|
|
|
|
)
|
|
|
|
assert ok, save_dir / gt_name
|
|
|
|
|
|
|
|
"""
|
|
|
|
Note that JPEG is lossy compression, so even if it is the highest quality 100,
|
|
|
|
when the saved images is reloaded, a difference occurs with the original pixel value.
|
|
|
|
If you want to save the original images as it is, save it as PNG or BMP.
|
|
|
|
"""
|
|
|
|
# gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
|
|
|
|
# assert np.array_equal(res, gt)
|
|
|
|
|
|
|
|
|
|
|
|
def get_data(
|
|
|
|
fx: float = 1,
|
|
|
|
fy: float = 1.0,
|
|
|
|
img_p=current_dir / "image.png",
|
|
|
|
mask_p=current_dir / "mask.png",
|
|
|
|
):
|
|
|
|
img = cv2.imread(str(img_p))
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
|
|
|
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
|
|
|
|
img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
|
|
|
|
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST)
|
|
|
|
return img, mask
|
|
|
|
|
|
|
|
|
|
|
|
def get_config(**kwargs):
|
|
|
|
data = dict(
|
|
|
|
sd_sampler=kwargs.get("sd_sampler", SDSampler.uni_pc),
|
|
|
|
ldm_steps=1,
|
|
|
|
ldm_sampler=LDMSampler.plms,
|
|
|
|
hd_strategy=kwargs.get("strategy", HDStrategy.ORIGINAL),
|
|
|
|
hd_strategy_crop_margin=32,
|
|
|
|
hd_strategy_crop_trigger_size=200,
|
|
|
|
hd_strategy_resize_limit=200,
|
|
|
|
)
|
|
|
|
data.update(**kwargs)
|
2024-01-02 07:34:36 +01:00
|
|
|
return InpaintRequest(image="", mask="", **data)
|