2024-04-12 05:07:41 +02:00
|
|
|
import PIL.Image
|
|
|
|
import cv2
|
|
|
|
import torch
|
|
|
|
from loguru import logger
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from ..base import DiffusionInpaintModel
|
|
|
|
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
|
|
|
|
from ..original_sd_configs import get_config_files
|
|
|
|
from ..utils import (
|
|
|
|
handle_from_pretrained_exceptions,
|
|
|
|
get_torch_dtype,
|
|
|
|
enable_low_mem,
|
|
|
|
is_local_files_only,
|
|
|
|
)
|
|
|
|
from .brushnet import BrushNetModel
|
|
|
|
from .brushnet_unet_forward import brushnet_unet_forward
|
|
|
|
from .unet_2d_blocks import CrossAttnDownBlock2D_forward, DownBlock2D_forward, CrossAttnUpBlock2D_forward, \
|
|
|
|
UpBlock2D_forward
|
|
|
|
from ...schema import InpaintRequest, ModelType
|
|
|
|
|
|
|
|
|
|
|
|
class BrushNetWrapper(DiffusionInpaintModel):
|
|
|
|
pad_mod = 8
|
|
|
|
min_size = 512
|
|
|
|
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
|
|
from .pipeline_brushnet import StableDiffusionBrushNetPipeline
|
|
|
|
self.model_info = kwargs["model_info"]
|
|
|
|
self.brushnet_method = kwargs["brushnet_method"]
|
|
|
|
|
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
|
|
|
self.torch_dtype = torch_dtype
|
|
|
|
|
|
|
|
model_kwargs = {
|
|
|
|
**kwargs.get("pipe_components", {}),
|
|
|
|
"local_files_only": is_local_files_only(**kwargs),
|
|
|
|
}
|
|
|
|
self.local_files_only = model_kwargs["local_files_only"]
|
|
|
|
|
|
|
|
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
|
|
|
|
"cpu_offload", False
|
|
|
|
)
|
|
|
|
if disable_nsfw_checker:
|
|
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
|
|
|
model_kwargs.update(
|
|
|
|
dict(
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=None,
|
|
|
|
requires_safety_checker=False,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
logger.info(f"Loading BrushNet model from {self.brushnet_method}")
|
|
|
|
brushnet = BrushNetModel.from_pretrained(self.brushnet_method, torch_dtype=torch_dtype)
|
|
|
|
|
|
|
|
if self.model_info.is_single_file_diffusers:
|
|
|
|
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
|
|
|
|
model_kwargs["num_in_channels"] = 4
|
|
|
|
else:
|
|
|
|
model_kwargs["num_in_channels"] = 9
|
|
|
|
|
|
|
|
self.model = StableDiffusionBrushNetPipeline.from_single_file(
|
|
|
|
self.model_id_or_path,
|
|
|
|
torch_dtype=torch_dtype,
|
|
|
|
load_safety_checker=not disable_nsfw_checker,
|
2024-04-12 12:52:33 +02:00
|
|
|
original_config_file=get_config_files()['v1'],
|
2024-04-12 05:07:41 +02:00
|
|
|
brushnet=brushnet,
|
|
|
|
**model_kwargs,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self.model = handle_from_pretrained_exceptions(
|
|
|
|
StableDiffusionBrushNetPipeline.from_pretrained,
|
|
|
|
pretrained_model_name_or_path=self.model_id_or_path,
|
|
|
|
variant="fp16",
|
|
|
|
torch_dtype=torch_dtype,
|
|
|
|
brushnet=brushnet,
|
|
|
|
**model_kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
|
|
|
|
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu:
|
|
|
|
logger.info("Enable sequential cpu offload")
|
|
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
|
|
else:
|
|
|
|
self.model = self.model.to(device)
|
|
|
|
if kwargs["sd_cpu_textencoder"]:
|
|
|
|
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
|
|
|
self.model.text_encoder = CPUTextEncoderWrapper(
|
|
|
|
self.model.text_encoder, torch_dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
|
|
|
|
# Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
|
|
|
|
self.model.unet.forward = brushnet_unet_forward.__get__(self.model.unet, self.model.unet.__class__)
|
|
|
|
|
|
|
|
for down_block in self.model.brushnet.down_blocks:
|
|
|
|
down_block.forward = DownBlock2D_forward.__get__(down_block, down_block.__class__)
|
|
|
|
for up_block in self.model.brushnet.up_blocks:
|
|
|
|
up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)
|
|
|
|
|
|
|
|
# Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
|
|
|
|
for down_block in self.model.unet.down_blocks:
|
|
|
|
if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
|
|
|
|
down_block.forward = CrossAttnDownBlock2D_forward.__get__(down_block, down_block.__class__)
|
|
|
|
else:
|
|
|
|
down_block.forward = DownBlock2D_forward.__get__(down_block, down_block.__class__)
|
|
|
|
|
|
|
|
for up_block in self.model.unet.up_blocks:
|
|
|
|
if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
|
|
|
|
up_block.forward = CrossAttnUpBlock2D_forward.__get__(up_block, up_block.__class__)
|
|
|
|
else:
|
|
|
|
up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)
|
|
|
|
|
|
|
|
def switch_brushnet_method(self, new_method: str):
|
|
|
|
self.brushnet_method = new_method
|
|
|
|
brushnet = BrushNetModel.from_pretrained(
|
|
|
|
new_method,
|
|
|
|
resume_download=True,
|
|
|
|
local_files_only=self.local_files_only,
|
|
|
|
torch_dtype=self.torch_dtype,
|
|
|
|
).to(self.model.device)
|
|
|
|
self.model.brushnet = brushnet
|
|
|
|
|
|
|
|
def forward(self, image, mask, config: InpaintRequest):
|
|
|
|
"""Input image and output image have same size
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
self.set_scheduler(config)
|
|
|
|
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
normalized_mask = mask[:, :].astype("float32") / 255.0
|
|
|
|
image = image * (1 - normalized_mask)
|
|
|
|
image = image.astype(np.uint8)
|
|
|
|
output = self.model(
|
|
|
|
image=PIL.Image.fromarray(image),
|
|
|
|
prompt=config.prompt,
|
|
|
|
negative_prompt=config.negative_prompt,
|
|
|
|
mask=PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB"),
|
|
|
|
num_inference_steps=config.sd_steps,
|
|
|
|
# strength=config.sd_strength,
|
|
|
|
guidance_scale=config.sd_guidance_scale,
|
|
|
|
output_type="np",
|
|
|
|
callback_on_step_end=self.callback,
|
|
|
|
height=img_h,
|
|
|
|
width=img_w,
|
|
|
|
generator=torch.manual_seed(config.sd_seed),
|
|
|
|
brushnet_conditioning_scale=config.brushnet_conditioning_scale,
|
|
|
|
).images[0]
|
|
|
|
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
|
|
return output
|