389 lines
14 KiB
Python
389 lines
14 KiB
Python
|
from typing import Dict, Any, Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
from diffusers.models.resnet import ResnetBlock2D
|
||
|
from diffusers.utils import is_torch_version
|
||
|
from diffusers.utils.torch_utils import apply_freeu
|
||
|
from torch import nn
|
||
|
|
||
|
|
||
|
class MidBlock2D(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
temb_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_time_scale_shift: str = "default",
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
resnet_pre_norm: bool = True,
|
||
|
output_scale_factor: float = 1.0,
|
||
|
use_linear_projection: bool = False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.has_cross_attention = False
|
||
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||
|
|
||
|
# there is always at least one resnet
|
||
|
resnets = [
|
||
|
ResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=in_channels,
|
||
|
temb_channels=temb_channels,
|
||
|
eps=resnet_eps,
|
||
|
groups=resnet_groups,
|
||
|
dropout=dropout,
|
||
|
time_embedding_norm=resnet_time_scale_shift,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
output_scale_factor=output_scale_factor,
|
||
|
pre_norm=resnet_pre_norm,
|
||
|
)
|
||
|
]
|
||
|
|
||
|
for i in range(num_layers):
|
||
|
resnets.append(
|
||
|
ResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=in_channels,
|
||
|
temb_channels=temb_channels,
|
||
|
eps=resnet_eps,
|
||
|
groups=resnet_groups,
|
||
|
dropout=dropout,
|
||
|
time_embedding_norm=resnet_time_scale_shift,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
output_scale_factor=output_scale_factor,
|
||
|
pre_norm=resnet_pre_norm,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
temb: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
lora_scale = 1.0
|
||
|
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
||
|
for resnet in self.resnets[1:]:
|
||
|
if self.training and self.gradient_checkpointing:
|
||
|
|
||
|
def create_custom_forward(module, return_dict=None):
|
||
|
def custom_forward(*inputs):
|
||
|
if return_dict is not None:
|
||
|
return module(*inputs, return_dict=return_dict)
|
||
|
else:
|
||
|
return module(*inputs)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet),
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
**ckpt_kwargs,
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
def DownBlock2D_forward(
|
||
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0,
|
||
|
down_block_add_samples: Optional[torch.FloatTensor] = None,
|
||
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
||
|
output_states = ()
|
||
|
|
||
|
for resnet in self.resnets:
|
||
|
if self.training and self.gradient_checkpointing:
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
def custom_forward(*inputs):
|
||
|
return module(*inputs)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
if is_torch_version(">=", "1.11.0"):
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet), hidden_states, temb
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
||
|
|
||
|
if down_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + down_block_add_samples.pop(0)
|
||
|
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
|
||
|
if self.downsamplers is not None:
|
||
|
for downsampler in self.downsamplers:
|
||
|
hidden_states = downsampler(hidden_states, scale=scale)
|
||
|
|
||
|
if down_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after
|
||
|
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
|
||
|
return hidden_states, output_states
|
||
|
|
||
|
|
||
|
def CrossAttnDownBlock2D_forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
temb: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
additional_residuals: Optional[torch.FloatTensor] = None,
|
||
|
down_block_add_samples: Optional[torch.FloatTensor] = None,
|
||
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
||
|
output_states = ()
|
||
|
|
||
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
||
|
|
||
|
blocks = list(zip(self.resnets, self.attentions))
|
||
|
|
||
|
for i, (resnet, attn) in enumerate(blocks):
|
||
|
if self.training and self.gradient_checkpointing:
|
||
|
|
||
|
def create_custom_forward(module, return_dict=None):
|
||
|
def custom_forward(*inputs):
|
||
|
if return_dict is not None:
|
||
|
return module(*inputs, return_dict=return_dict)
|
||
|
else:
|
||
|
return module(*inputs)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet),
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
**ckpt_kwargs,
|
||
|
)
|
||
|
hidden_states = attn(
|
||
|
hidden_states,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
else:
|
||
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
||
|
hidden_states = attn(
|
||
|
hidden_states,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
|
||
|
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
||
|
if i == len(blocks) - 1 and additional_residuals is not None:
|
||
|
hidden_states = hidden_states + additional_residuals
|
||
|
|
||
|
if down_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + down_block_add_samples.pop(0)
|
||
|
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
|
||
|
if self.downsamplers is not None:
|
||
|
for downsampler in self.downsamplers:
|
||
|
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
||
|
|
||
|
if down_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after
|
||
|
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
|
||
|
return hidden_states, output_states
|
||
|
|
||
|
|
||
|
def CrossAttnUpBlock2D_forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
||
|
temb: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
upsample_size: Optional[int] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
return_res_samples: Optional[bool] = False,
|
||
|
up_block_add_samples: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
||
|
is_freeu_enabled = (
|
||
|
getattr(self, "s1", None)
|
||
|
and getattr(self, "s2", None)
|
||
|
and getattr(self, "b1", None)
|
||
|
and getattr(self, "b2", None)
|
||
|
)
|
||
|
if return_res_samples:
|
||
|
output_states = ()
|
||
|
|
||
|
for resnet, attn in zip(self.resnets, self.attentions):
|
||
|
# pop res hidden states
|
||
|
res_hidden_states = res_hidden_states_tuple[-1]
|
||
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||
|
|
||
|
# FreeU: Only operate on the first two stages
|
||
|
if is_freeu_enabled:
|
||
|
hidden_states, res_hidden_states = apply_freeu(
|
||
|
self.resolution_idx,
|
||
|
hidden_states,
|
||
|
res_hidden_states,
|
||
|
s1=self.s1,
|
||
|
s2=self.s2,
|
||
|
b1=self.b1,
|
||
|
b2=self.b2,
|
||
|
)
|
||
|
|
||
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||
|
|
||
|
if self.training and self.gradient_checkpointing:
|
||
|
|
||
|
def create_custom_forward(module, return_dict=None):
|
||
|
def custom_forward(*inputs):
|
||
|
if return_dict is not None:
|
||
|
return module(*inputs, return_dict=return_dict)
|
||
|
else:
|
||
|
return module(*inputs)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet),
|
||
|
hidden_states,
|
||
|
temb,
|
||
|
**ckpt_kwargs,
|
||
|
)
|
||
|
hidden_states = attn(
|
||
|
hidden_states,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
else:
|
||
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
||
|
hidden_states = attn(
|
||
|
hidden_states,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
if return_res_samples:
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
if up_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + up_block_add_samples.pop(0)
|
||
|
|
||
|
if self.upsamplers is not None:
|
||
|
for upsampler in self.upsamplers:
|
||
|
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
|
||
|
if return_res_samples:
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
if up_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + up_block_add_samples.pop(0)
|
||
|
|
||
|
if return_res_samples:
|
||
|
return hidden_states, output_states
|
||
|
else:
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
def UpBlock2D_forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
||
|
temb: Optional[torch.FloatTensor] = None,
|
||
|
upsample_size: Optional[int] = None,
|
||
|
scale: float = 1.0,
|
||
|
return_res_samples: Optional[bool] = False,
|
||
|
up_block_add_samples: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
is_freeu_enabled = (
|
||
|
getattr(self, "s1", None)
|
||
|
and getattr(self, "s2", None)
|
||
|
and getattr(self, "b1", None)
|
||
|
and getattr(self, "b2", None)
|
||
|
)
|
||
|
if return_res_samples:
|
||
|
output_states = ()
|
||
|
|
||
|
for resnet in self.resnets:
|
||
|
# pop res hidden states
|
||
|
res_hidden_states = res_hidden_states_tuple[-1]
|
||
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||
|
|
||
|
# FreeU: Only operate on the first two stages
|
||
|
if is_freeu_enabled:
|
||
|
hidden_states, res_hidden_states = apply_freeu(
|
||
|
self.resolution_idx,
|
||
|
hidden_states,
|
||
|
res_hidden_states,
|
||
|
s1=self.s1,
|
||
|
s2=self.s2,
|
||
|
b1=self.b1,
|
||
|
b2=self.b2,
|
||
|
)
|
||
|
|
||
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||
|
|
||
|
if self.training and self.gradient_checkpointing:
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
def custom_forward(*inputs):
|
||
|
return module(*inputs)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
if is_torch_version(">=", "1.11.0"):
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(resnet), hidden_states, temb
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
||
|
|
||
|
if return_res_samples:
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
if up_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after
|
||
|
|
||
|
if self.upsamplers is not None:
|
||
|
for upsampler in self.upsamplers:
|
||
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
||
|
|
||
|
if return_res_samples:
|
||
|
output_states = output_states + (hidden_states,)
|
||
|
if up_block_add_samples is not None:
|
||
|
hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after
|
||
|
|
||
|
if return_res_samples:
|
||
|
return hidden_states, output_states
|
||
|
else:
|
||
|
return hidden_states
|