44 lines
1.4 KiB
Python
44 lines
1.4 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from typing import Type
|
||
|
|
||
|
|
||
|
class MLPBlock(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
embedding_dim: int,
|
||
|
mlp_dim: int,
|
||
|
act: Type[nn.Module] = nn.GELU,
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||
|
self.act = act()
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
return self.lin2(self.act(self.lin1(x)))
|
||
|
|
||
|
|
||
|
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
||
|
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
||
|
class LayerNorm2d(nn.Module):
|
||
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
||
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||
|
self.eps = eps
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
u = x.mean(1, keepdim=True)
|
||
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
||
|
x = (x - u) / torch.sqrt(s + self.eps)
|
||
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||
|
return x
|