215 lines
8.4 KiB
Python
215 lines
8.4 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from typing import Any, Optional, Tuple, Type
|
||
|
|
||
|
from .common import LayerNorm2d
|
||
|
|
||
|
|
||
|
class PromptEncoder(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
image_embedding_size: Tuple[int, int],
|
||
|
input_image_size: Tuple[int, int],
|
||
|
mask_in_chans: int,
|
||
|
activation: Type[nn.Module] = nn.GELU,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Encodes prompts for input to SAM's mask decoder.
|
||
|
|
||
|
Arguments:
|
||
|
embed_dim (int): The prompts' embedding dimension
|
||
|
image_embedding_size (tuple(int, int)): The spatial size of the
|
||
|
image embedding, as (H, W).
|
||
|
input_image_size (int): The padded size of the image as input
|
||
|
to the image encoder, as (H, W).
|
||
|
mask_in_chans (int): The number of hidden channels used for
|
||
|
encoding input masks.
|
||
|
activation (nn.Module): The activation to use when encoding
|
||
|
input masks.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.input_image_size = input_image_size
|
||
|
self.image_embedding_size = image_embedding_size
|
||
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||
|
|
||
|
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||
|
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
||
|
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||
|
|
||
|
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||
|
self.mask_downscaling = nn.Sequential(
|
||
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||
|
LayerNorm2d(mask_in_chans // 4),
|
||
|
activation(),
|
||
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||
|
LayerNorm2d(mask_in_chans),
|
||
|
activation(),
|
||
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||
|
)
|
||
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||
|
|
||
|
def get_dense_pe(self) -> torch.Tensor:
|
||
|
"""
|
||
|
Returns the positional encoding used to encode point prompts,
|
||
|
applied to a dense set of points the shape of the image encoding.
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Positional encoding with shape
|
||
|
1x(embed_dim)x(embedding_h)x(embedding_w)
|
||
|
"""
|
||
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||
|
|
||
|
def _embed_points(
|
||
|
self,
|
||
|
points: torch.Tensor,
|
||
|
labels: torch.Tensor,
|
||
|
pad: bool,
|
||
|
) -> torch.Tensor:
|
||
|
"""Embeds point prompts."""
|
||
|
points = points + 0.5 # Shift to center of pixel
|
||
|
if pad:
|
||
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||
|
points = torch.cat([points, padding_point], dim=1)
|
||
|
labels = torch.cat([labels, padding_label], dim=1)
|
||
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||
|
point_embedding[labels == -1] = 0.0
|
||
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||
|
return point_embedding
|
||
|
|
||
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||
|
"""Embeds box prompts."""
|
||
|
boxes = boxes + 0.5 # Shift to center of pixel
|
||
|
coords = boxes.reshape(-1, 2, 2)
|
||
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||
|
return corner_embedding
|
||
|
|
||
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||
|
"""Embeds mask inputs."""
|
||
|
mask_embedding = self.mask_downscaling(masks)
|
||
|
return mask_embedding
|
||
|
|
||
|
def _get_batch_size(
|
||
|
self,
|
||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||
|
boxes: Optional[torch.Tensor],
|
||
|
masks: Optional[torch.Tensor],
|
||
|
) -> int:
|
||
|
"""
|
||
|
Gets the batch size of the output given the batch size of the input prompts.
|
||
|
"""
|
||
|
if points is not None:
|
||
|
return points[0].shape[0]
|
||
|
elif boxes is not None:
|
||
|
return boxes.shape[0]
|
||
|
elif masks is not None:
|
||
|
return masks.shape[0]
|
||
|
else:
|
||
|
return 1
|
||
|
|
||
|
def _get_device(self) -> torch.device:
|
||
|
return self.point_embeddings[0].weight.device
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||
|
boxes: Optional[torch.Tensor],
|
||
|
masks: Optional[torch.Tensor],
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Embeds different types of prompts, returning both sparse and dense
|
||
|
embeddings.
|
||
|
|
||
|
Arguments:
|
||
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
||
|
and labels to embed.
|
||
|
boxes (torch.Tensor or none): boxes to embed
|
||
|
masks (torch.Tensor or none): masks to embed
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
||
|
BxNx(embed_dim), where N is determined by the number of input points
|
||
|
and boxes.
|
||
|
torch.Tensor: dense embeddings for the masks, in the shape
|
||
|
Bx(embed_dim)x(embed_H)x(embed_W)
|
||
|
"""
|
||
|
bs = self._get_batch_size(points, boxes, masks)
|
||
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
||
|
if points is not None:
|
||
|
coords, labels = points
|
||
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||
|
if boxes is not None:
|
||
|
box_embeddings = self._embed_boxes(boxes)
|
||
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||
|
|
||
|
if masks is not None:
|
||
|
dense_embeddings = self._embed_masks(masks)
|
||
|
else:
|
||
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||
|
)
|
||
|
|
||
|
return sparse_embeddings, dense_embeddings
|
||
|
|
||
|
|
||
|
class PositionEmbeddingRandom(nn.Module):
|
||
|
"""
|
||
|
Positional encoding using random spatial frequencies.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||
|
super().__init__()
|
||
|
if scale is None or scale <= 0.0:
|
||
|
scale = 1.0
|
||
|
self.register_buffer(
|
||
|
"positional_encoding_gaussian_matrix",
|
||
|
scale * torch.randn((2, num_pos_feats)),
|
||
|
)
|
||
|
|
||
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||
|
"""Positionally encode points that are normalized to [0,1]."""
|
||
|
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||
|
coords = 2 * coords - 1
|
||
|
coords = coords @ self.positional_encoding_gaussian_matrix
|
||
|
coords = 2 * np.pi * coords
|
||
|
# outputs d_1 x ... x d_n x C shape
|
||
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||
|
|
||
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||
|
"""Generate positional encoding for a grid of the specified size."""
|
||
|
h, w = size
|
||
|
device: Any = self.positional_encoding_gaussian_matrix.device
|
||
|
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
||
|
y_embed = grid.cumsum(dim=0) - 0.5
|
||
|
x_embed = grid.cumsum(dim=1) - 0.5
|
||
|
y_embed = y_embed / h
|
||
|
x_embed = x_embed / w
|
||
|
|
||
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
||
|
return pe.permute(2, 0, 1) # C x H x W
|
||
|
|
||
|
def forward_with_coords(
|
||
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
||
|
) -> torch.Tensor:
|
||
|
"""Positionally encode points that are not normalized to [0,1]."""
|
||
|
coords = coords_input.clone()
|
||
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
||
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
||
|
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|