2023-01-28 14:13:21 +01:00
|
|
|
import PIL.Image
|
|
|
|
import cv2
|
|
|
|
import torch
|
|
|
|
from loguru import logger
|
|
|
|
|
2024-01-05 09:38:55 +01:00
|
|
|
from iopaint.const import INSTRUCT_PIX2PIX_NAME
|
2024-01-05 09:40:06 +01:00
|
|
|
from .base import DiffusionInpaintModel
|
2024-01-05 08:19:23 +01:00
|
|
|
from iopaint.schema import InpaintRequest
|
2024-01-09 15:42:48 +01:00
|
|
|
from .utils import get_torch_dtype, enable_low_mem
|
2023-01-28 14:13:21 +01:00
|
|
|
|
|
|
|
|
2023-01-28 14:24:51 +01:00
|
|
|
class InstructPix2Pix(DiffusionInpaintModel):
|
2024-01-05 09:38:55 +01:00
|
|
|
name = INSTRUCT_PIX2PIX_NAME
|
2023-01-28 14:13:21 +01:00
|
|
|
pad_mod = 8
|
|
|
|
min_size = 512
|
|
|
|
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
|
|
|
from diffusers import StableDiffusionInstructPix2PixPipeline
|
|
|
|
|
2024-01-08 16:53:20 +01:00
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
2023-11-16 14:12:06 +01:00
|
|
|
|
2023-12-01 03:15:35 +01:00
|
|
|
model_kwargs = {}
|
2023-11-16 14:12:06 +01:00
|
|
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
2023-01-28 14:13:21 +01:00
|
|
|
logger.info("Disable Stable Diffusion Model NSFW checker")
|
2023-11-16 14:12:06 +01:00
|
|
|
model_kwargs.update(
|
|
|
|
dict(
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=None,
|
|
|
|
requires_safety_checker=False,
|
|
|
|
)
|
|
|
|
)
|
2023-01-28 14:13:21 +01:00
|
|
|
|
|
|
|
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
2023-12-24 08:32:27 +01:00
|
|
|
self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
|
2023-01-28 14:13:21 +01:00
|
|
|
)
|
2024-01-09 15:42:48 +01:00
|
|
|
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
2023-01-28 14:13:21 +01:00
|
|
|
|
2023-11-16 14:12:06 +01:00
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu:
|
2023-01-28 14:13:21 +01:00
|
|
|
logger.info("Enable sequential cpu offload")
|
|
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
|
|
else:
|
|
|
|
self.model = self.model.to(device)
|
|
|
|
|
2023-12-30 16:36:44 +01:00
|
|
|
def forward(self, image, mask, config: InpaintRequest):
|
2023-01-28 14:13:21 +01:00
|
|
|
"""Input image and output image have same size
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
|
|
return: BGR IMAGE
|
|
|
|
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
|
|
|
|
"""
|
|
|
|
output = self.model(
|
|
|
|
image=PIL.Image.fromarray(image),
|
|
|
|
prompt=config.prompt,
|
|
|
|
negative_prompt=config.negative_prompt,
|
2023-12-16 06:34:56 +01:00
|
|
|
num_inference_steps=config.sd_steps,
|
2023-01-28 14:13:21 +01:00
|
|
|
image_guidance_scale=config.p2p_image_guidance_scale,
|
2023-12-16 06:34:56 +01:00
|
|
|
guidance_scale=config.sd_guidance_scale,
|
2023-08-30 15:30:11 +02:00
|
|
|
output_type="np",
|
2023-11-16 14:12:06 +01:00
|
|
|
generator=torch.manual_seed(config.sd_seed),
|
2023-01-28 14:13:21 +01:00
|
|
|
).images[0]
|
|
|
|
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
|
|
return output
|