IOPaint/lama_cleaner/tests/utils.py

76 lines
2.3 KiB
Python
Raw Normal View History

2023-12-28 03:48:52 +01:00
from pathlib import Path
import cv2
import pytest
import torch
2023-12-30 16:36:44 +01:00
from lama_cleaner.schema import LDMSampler, HDStrategy, InpaintRequest, SDSampler
2023-12-28 03:48:52 +01:00
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True)
def check_device(device: str) -> int:
if device == "cuda" and not torch.cuda.is_available():
pytest.skip("CUDA is not available, skip test on cuda")
if device == "mps" and not torch.backends.mps.is_available():
pytest.skip("mps is not available, skip test on mps")
steps = 1 if device == "cpu" else 20
return steps
def assert_equal(
model,
config,
gt_name,
fx: float = 1,
fy: float = 1,
img_p=current_dir / "image.png",
mask_p=current_dir / "mask.png",
):
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
print(f"Input image shape: {img.shape}")
res = model(img, mask, config)
ok = cv2.imwrite(
str(save_dir / gt_name),
res,
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
)
assert ok, save_dir / gt_name
"""
Note that JPEG is lossy compression, so even if it is the highest quality 100,
when the saved images is reloaded, a difference occurs with the original pixel value.
If you want to save the original images as it is, save it as PNG or BMP.
"""
# gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
# assert np.array_equal(res, gt)
def get_data(
fx: float = 1,
fy: float = 1.0,
img_p=current_dir / "image.png",
mask_p=current_dir / "mask.png",
):
img = cv2.imread(str(img_p))
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST)
return img, mask
def get_config(**kwargs):
data = dict(
sd_sampler=kwargs.get("sd_sampler", SDSampler.uni_pc),
ldm_steps=1,
ldm_sampler=LDMSampler.plms,
hd_strategy=kwargs.get("strategy", HDStrategy.ORIGINAL),
hd_strategy_crop_margin=32,
hd_strategy_crop_trigger_size=200,
hd_strategy_resize_limit=200,
)
data.update(**kwargs)
2023-12-30 16:36:44 +01:00
return InpaintRequest(**data)