173 lines
6.0 KiB
Python
173 lines
6.0 KiB
Python
|
import cv2
|
||
|
import math
|
||
|
import numpy as np
|
||
|
import os
|
||
|
import torch
|
||
|
from torchvision.utils import make_grid
|
||
|
|
||
|
|
||
|
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
||
|
"""Numpy array to tensor.
|
||
|
|
||
|
Args:
|
||
|
imgs (list[ndarray] | ndarray): Input images.
|
||
|
bgr2rgb (bool): Whether to change bgr to rgb.
|
||
|
float32 (bool): Whether to change to float32.
|
||
|
|
||
|
Returns:
|
||
|
list[tensor] | tensor: Tensor images. If returned results only have
|
||
|
one element, just return tensor.
|
||
|
"""
|
||
|
|
||
|
def _totensor(img, bgr2rgb, float32):
|
||
|
if img.shape[2] == 3 and bgr2rgb:
|
||
|
if img.dtype == 'float64':
|
||
|
img = img.astype('float32')
|
||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
img = torch.from_numpy(img.transpose(2, 0, 1))
|
||
|
if float32:
|
||
|
img = img.float()
|
||
|
return img
|
||
|
|
||
|
if isinstance(imgs, list):
|
||
|
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
||
|
else:
|
||
|
return _totensor(imgs, bgr2rgb, float32)
|
||
|
|
||
|
|
||
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
||
|
"""Convert torch Tensors into image numpy arrays.
|
||
|
|
||
|
After clamping to [min, max], values will be normalized to [0, 1].
|
||
|
|
||
|
Args:
|
||
|
tensor (Tensor or list[Tensor]): Accept shapes:
|
||
|
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
||
|
2) 3D Tensor of shape (3/1 x H x W);
|
||
|
3) 2D Tensor of shape (H x W).
|
||
|
Tensor channel should be in RGB order.
|
||
|
rgb2bgr (bool): Whether to change rgb to bgr.
|
||
|
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
||
|
to uint8 type with range [0, 255]; otherwise, float type with
|
||
|
range [0, 1]. Default: ``np.uint8``.
|
||
|
min_max (tuple[int]): min and max values for clamp.
|
||
|
|
||
|
Returns:
|
||
|
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
||
|
shape (H x W). The channel order is BGR.
|
||
|
"""
|
||
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
||
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
||
|
|
||
|
if torch.is_tensor(tensor):
|
||
|
tensor = [tensor]
|
||
|
result = []
|
||
|
for _tensor in tensor:
|
||
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
||
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
||
|
|
||
|
n_dim = _tensor.dim()
|
||
|
if n_dim == 4:
|
||
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
||
|
img_np = img_np.transpose(1, 2, 0)
|
||
|
if rgb2bgr:
|
||
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
||
|
elif n_dim == 3:
|
||
|
img_np = _tensor.numpy()
|
||
|
img_np = img_np.transpose(1, 2, 0)
|
||
|
if img_np.shape[2] == 1: # gray image
|
||
|
img_np = np.squeeze(img_np, axis=2)
|
||
|
else:
|
||
|
if rgb2bgr:
|
||
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
||
|
elif n_dim == 2:
|
||
|
img_np = _tensor.numpy()
|
||
|
else:
|
||
|
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
||
|
if out_type == np.uint8:
|
||
|
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
||
|
img_np = (img_np * 255.0).round()
|
||
|
img_np = img_np.astype(out_type)
|
||
|
result.append(img_np)
|
||
|
if len(result) == 1:
|
||
|
result = result[0]
|
||
|
return result
|
||
|
|
||
|
|
||
|
def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
|
||
|
"""This implementation is slightly faster than tensor2img.
|
||
|
It now only supports torch tensor with shape (1, c, h, w).
|
||
|
|
||
|
Args:
|
||
|
tensor (Tensor): Now only support torch tensor with (1, c, h, w).
|
||
|
rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
|
||
|
min_max (tuple[int]): min and max values for clamp.
|
||
|
"""
|
||
|
output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
|
||
|
output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
|
||
|
output = output.type(torch.uint8).cpu().numpy()
|
||
|
if rgb2bgr:
|
||
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def imfrombytes(content, flag='color', float32=False):
|
||
|
"""Read an image from bytes.
|
||
|
|
||
|
Args:
|
||
|
content (bytes): Image bytes got from files or other streams.
|
||
|
flag (str): Flags specifying the color type of a loaded image,
|
||
|
candidates are `color`, `grayscale` and `unchanged`.
|
||
|
float32 (bool): Whether to change to float32., If True, will also norm
|
||
|
to [0, 1]. Default: False.
|
||
|
|
||
|
Returns:
|
||
|
ndarray: Loaded image array.
|
||
|
"""
|
||
|
img_np = np.frombuffer(content, np.uint8)
|
||
|
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
|
||
|
img = cv2.imdecode(img_np, imread_flags[flag])
|
||
|
if float32:
|
||
|
img = img.astype(np.float32) / 255.
|
||
|
return img
|
||
|
|
||
|
|
||
|
def imwrite(img, file_path, params=None, auto_mkdir=True):
|
||
|
"""Write image to file.
|
||
|
|
||
|
Args:
|
||
|
img (ndarray): Image array to be written.
|
||
|
file_path (str): Image file path.
|
||
|
params (None or list): Same as opencv's :func:`imwrite` interface.
|
||
|
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
|
||
|
whether to create it automatically.
|
||
|
|
||
|
Returns:
|
||
|
bool: Successful or not.
|
||
|
"""
|
||
|
if auto_mkdir:
|
||
|
dir_name = os.path.abspath(os.path.dirname(file_path))
|
||
|
os.makedirs(dir_name, exist_ok=True)
|
||
|
ok = cv2.imwrite(file_path, img, params)
|
||
|
if not ok:
|
||
|
raise IOError('Failed in writing images.')
|
||
|
|
||
|
|
||
|
def crop_border(imgs, crop_border):
|
||
|
"""Crop borders of images.
|
||
|
|
||
|
Args:
|
||
|
imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
|
||
|
crop_border (int): Crop border for each end of height and weight.
|
||
|
|
||
|
Returns:
|
||
|
list[ndarray]: Cropped images.
|
||
|
"""
|
||
|
if crop_border == 0:
|
||
|
return imgs
|
||
|
else:
|
||
|
if isinstance(imgs, list):
|
||
|
return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
|
||
|
else:
|
||
|
return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
|