85 lines
2.7 KiB
Python
85 lines
2.7 KiB
Python
|
import os
|
||
|
|
||
|
import torch
|
||
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
||
|
from gfpgan import GFPGANv1Clean, GFPGANer
|
||
|
from torch.hub import get_dir
|
||
|
|
||
|
|
||
|
class MyGFPGANer(GFPGANer):
|
||
|
"""Helper for restoration with GFPGAN.
|
||
|
|
||
|
It will detect and crop faces, and then resize the faces to 512x512.
|
||
|
GFPGAN is used to restored the resized faces.
|
||
|
The background is upsampled with the bg_upsampler.
|
||
|
Finally, the faces will be pasted back to the upsample background image.
|
||
|
|
||
|
Args:
|
||
|
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
|
||
|
upscale (float): The upscale of the final output. Default: 2.
|
||
|
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
|
||
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
||
|
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_path,
|
||
|
upscale=2,
|
||
|
arch="clean",
|
||
|
channel_multiplier=2,
|
||
|
bg_upsampler=None,
|
||
|
device=None,
|
||
|
):
|
||
|
self.upscale = upscale
|
||
|
self.bg_upsampler = bg_upsampler
|
||
|
|
||
|
# initialize model
|
||
|
self.device = (
|
||
|
torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
if device is None
|
||
|
else device
|
||
|
)
|
||
|
# initialize the GFP-GAN
|
||
|
if arch == "clean":
|
||
|
self.gfpgan = GFPGANv1Clean(
|
||
|
out_size=512,
|
||
|
num_style_feat=512,
|
||
|
channel_multiplier=channel_multiplier,
|
||
|
decoder_load_path=None,
|
||
|
fix_decoder=False,
|
||
|
num_mlp=8,
|
||
|
input_is_latent=True,
|
||
|
different_w=True,
|
||
|
narrow=1,
|
||
|
sft_half=True,
|
||
|
)
|
||
|
elif arch == "RestoreFormer":
|
||
|
from gfpgan.archs.restoreformer_arch import RestoreFormer
|
||
|
|
||
|
self.gfpgan = RestoreFormer()
|
||
|
|
||
|
hub_dir = get_dir()
|
||
|
model_dir = os.path.join(hub_dir, "checkpoints")
|
||
|
|
||
|
# initialize face helper
|
||
|
self.face_helper = FaceRestoreHelper(
|
||
|
upscale,
|
||
|
face_size=512,
|
||
|
crop_ratio=(1, 1),
|
||
|
det_model="retinaface_resnet50",
|
||
|
save_ext="png",
|
||
|
use_parse=True,
|
||
|
device=self.device,
|
||
|
model_rootpath=model_dir,
|
||
|
)
|
||
|
|
||
|
loadnet = torch.load(model_path)
|
||
|
if "params_ema" in loadnet:
|
||
|
keyname = "params_ema"
|
||
|
else:
|
||
|
keyname = "params"
|
||
|
self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
|
||
|
self.gfpgan.eval()
|
||
|
self.gfpgan = self.gfpgan.to(self.device)
|