2023-03-19 15:40:23 +01:00
|
|
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# Copy from https://github.com/mikonvergence/ControlNetInpaint/blob/main/src/pipeline_stable_diffusion_controlnet_inpaint.py
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import PIL.Image
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import *
|
|
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
|
|
Examples:
|
|
|
|
```py
|
|
|
|
>>> # !pip install opencv-python transformers accelerate
|
|
|
|
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, UniPCMultistepScheduler
|
|
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> import torch
|
|
|
|
|
|
|
|
>>> import cv2
|
|
|
|
>>> from PIL import Image
|
|
|
|
>>> # download an image
|
|
|
|
>>> image = load_image(
|
|
|
|
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
|
|
|
... )
|
|
|
|
>>> image = np.array(image)
|
|
|
|
>>> mask_image = load_image(
|
|
|
|
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
|
|
|
... )
|
|
|
|
>>> mask_image = np.array(mask_image)
|
|
|
|
>>> # get canny image
|
|
|
|
>>> canny_image = cv2.Canny(image, 100, 200)
|
|
|
|
>>> canny_image = canny_image[:, :, None]
|
|
|
|
>>> canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
|
|
|
>>> canny_image = Image.fromarray(canny_image)
|
|
|
|
|
|
|
|
>>> # load control net and stable diffusion v1-5
|
|
|
|
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
|
|
|
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
|
|
... "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
|
|
|
|
... )
|
|
|
|
|
|
|
|
>>> # speed up diffusion process with faster scheduler and memory optimization
|
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
>>> # remove following line if xformers is not installed
|
|
|
|
>>> pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
|
|
|
|
>>> pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
>>> # generate image
|
|
|
|
>>> generator = torch.manual_seed(0)
|
|
|
|
>>> image = pipe(
|
|
|
|
... "futuristic-looking doggo",
|
|
|
|
... num_inference_steps=20,
|
|
|
|
... generator=generator,
|
|
|
|
... image=image,
|
|
|
|
... control_image=canny_image,
|
|
|
|
... mask_image=mask_image
|
|
|
|
... ).images[0]
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_mask_and_masked_image(image, mask):
|
|
|
|
"""
|
|
|
|
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
|
|
|
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
|
|
|
``image`` and ``1`` for the ``mask``.
|
|
|
|
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
|
|
|
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
|
|
|
Args:
|
|
|
|
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
|
|
|
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
|
|
|
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
|
|
|
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
|
|
|
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
|
|
|
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
|
|
|
Raises:
|
|
|
|
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
|
|
|
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
|
|
|
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
|
|
|
(ot the other way around).
|
|
|
|
Returns:
|
|
|
|
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
|
|
|
dimensions: ``batch x channels x height x width``.
|
|
|
|
"""
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
|
|
if not isinstance(mask, torch.Tensor):
|
|
|
|
raise TypeError(
|
|
|
|
f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Batch single image
|
|
|
|
if image.ndim == 3:
|
|
|
|
assert (
|
|
|
|
image.shape[0] == 3
|
|
|
|
), "Image outside a batch should be of shape (3, H, W)"
|
|
|
|
image = image.unsqueeze(0)
|
|
|
|
|
|
|
|
# Batch and add channel dim for single mask
|
|
|
|
if mask.ndim == 2:
|
|
|
|
mask = mask.unsqueeze(0).unsqueeze(0)
|
|
|
|
|
|
|
|
# Batch single mask or add channel dim
|
|
|
|
if mask.ndim == 3:
|
|
|
|
# Single batched mask, no channel dim or single mask not batched but channel dim
|
|
|
|
if mask.shape[0] == 1:
|
|
|
|
mask = mask.unsqueeze(0)
|
|
|
|
|
|
|
|
# Batched masks no channel dim
|
|
|
|
else:
|
|
|
|
mask = mask.unsqueeze(1)
|
|
|
|
|
|
|
|
assert (
|
|
|
|
image.ndim == 4 and mask.ndim == 4
|
|
|
|
), "Image and Mask must have 4 dimensions"
|
|
|
|
assert (
|
|
|
|
image.shape[-2:] == mask.shape[-2:]
|
|
|
|
), "Image and Mask must have the same spatial dimensions"
|
|
|
|
assert (
|
|
|
|
image.shape[0] == mask.shape[0]
|
|
|
|
), "Image and Mask must have the same batch size"
|
|
|
|
|
|
|
|
# Check image is in [-1, 1]
|
|
|
|
if image.min() < -1 or image.max() > 1:
|
|
|
|
raise ValueError("Image should be in [-1, 1] range")
|
|
|
|
|
|
|
|
# Check mask is in [0, 1]
|
|
|
|
if mask.min() < 0 or mask.max() > 1:
|
|
|
|
raise ValueError("Mask should be in [0, 1] range")
|
|
|
|
|
|
|
|
# Binarize mask
|
|
|
|
mask[mask < 0.5] = 0
|
|
|
|
mask[mask >= 0.5] = 1
|
|
|
|
|
|
|
|
# Image as float32
|
|
|
|
image = image.to(dtype=torch.float32)
|
|
|
|
elif isinstance(mask, torch.Tensor):
|
|
|
|
raise TypeError(
|
|
|
|
f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# preprocess image
|
|
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
|
|
image = [image]
|
|
|
|
|
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
|
|
|
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
|
|
|
image = np.concatenate(image, axis=0)
|
|
|
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
|
|
|
image = np.concatenate([i[None, :] for i in image], axis=0)
|
|
|
|
|
|
|
|
image = image.transpose(0, 3, 1, 2)
|
|
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
|
|
|
|
|
|
# preprocess mask
|
|
|
|
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
|
|
|
mask = [mask]
|
|
|
|
|
|
|
|
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
|
|
|
mask = np.concatenate(
|
|
|
|
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
|
|
|
|
)
|
|
|
|
mask = mask.astype(np.float32) / 255.0
|
|
|
|
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
|
|
|
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
|
|
|
|
|
|
|
mask[mask < 0.5] = 0
|
|
|
|
mask[mask >= 0.5] = 1
|
|
|
|
mask = torch.from_numpy(mask)
|
|
|
|
|
|
|
|
masked_image = image * (mask < 0.5)
|
|
|
|
|
|
|
|
return mask, masked_image
|
|
|
|
|
|
|
|
|
|
|
|
class StableDiffusionControlNetInpaintPipeline(StableDiffusionControlNetPipeline):
|
|
|
|
r"""
|
|
|
|
Pipeline for text-guided image inpainting using Stable Diffusion with ControlNet guidance.
|
|
|
|
|
|
|
|
This model inherits from [`StableDiffusionControlNetPipeline`]. Check the superclass documentation for the generic methods the
|
|
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
vae ([`AutoencoderKL`]):
|
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
|
text_encoder ([`CLIPTextModel`]):
|
|
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
|
|
tokenizer (`CLIPTokenizer`):
|
|
|
|
Tokenizer of class
|
|
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
|
|
controlnet ([`ControlNetModel`]):
|
|
|
|
Provides additional conditioning to the unet during the denoising process
|
|
|
|
scheduler ([`SchedulerMixin`]):
|
|
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def prepare_mask_latents(
|
|
|
|
self,
|
|
|
|
mask,
|
|
|
|
masked_image,
|
|
|
|
batch_size,
|
|
|
|
height,
|
|
|
|
width,
|
|
|
|
dtype,
|
|
|
|
device,
|
|
|
|
generator,
|
|
|
|
do_classifier_free_guidance,
|
|
|
|
):
|
|
|
|
# resize the mask to latents shape as we concatenate the mask to the latents
|
|
|
|
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
|
|
|
# and half precision
|
|
|
|
mask = torch.nn.functional.interpolate(
|
|
|
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
|
|
|
)
|
|
|
|
mask = mask.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
masked_image = masked_image.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
# encode the mask image into latents space so we can concatenate it to the latents
|
|
|
|
if isinstance(generator, list):
|
|
|
|
masked_image_latents = [
|
|
|
|
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(
|
|
|
|
generator=generator[i]
|
|
|
|
)
|
|
|
|
for i in range(batch_size)
|
|
|
|
]
|
|
|
|
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
|
|
|
else:
|
|
|
|
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(
|
|
|
|
generator=generator
|
|
|
|
)
|
|
|
|
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
|
|
|
|
|
|
|
|
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
|
|
|
if mask.shape[0] < batch_size:
|
|
|
|
if not batch_size % mask.shape[0] == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
|
|
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
|
|
|
" of masks that you pass is divisible by the total requested batch size."
|
|
|
|
)
|
|
|
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
|
|
|
if masked_image_latents.shape[0] < batch_size:
|
|
|
|
if not batch_size % masked_image_latents.shape[0] == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
|
|
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
|
|
|
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
|
|
|
)
|
|
|
|
masked_image_latents = masked_image_latents.repeat(
|
|
|
|
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
|
|
|
)
|
|
|
|
|
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
|
|
|
masked_image_latents = (
|
|
|
|
torch.cat([masked_image_latents] * 2)
|
|
|
|
if do_classifier_free_guidance
|
|
|
|
else masked_image_latents
|
|
|
|
)
|
|
|
|
|
|
|
|
# aligning device to prevent device errors when concating it with the latent model input
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
|
|
|
return mask, masked_image_latents
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
|
|
|
control_image: Union[
|
|
|
|
torch.FloatTensor,
|
|
|
|
PIL.Image.Image,
|
|
|
|
List[torch.FloatTensor],
|
|
|
|
List[PIL.Image.Image],
|
|
|
|
] = None,
|
|
|
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
|
|
|
height: Optional[int] = None,
|
|
|
|
width: Optional[int] = None,
|
|
|
|
num_inference_steps: int = 50,
|
|
|
|
guidance_scale: float = 7.5,
|
|
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
eta: float = 0.0,
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
output_type: Optional[str] = "pil",
|
|
|
|
return_dict: bool = True,
|
|
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
|
callback_steps: int = 1,
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
controlnet_conditioning_scale: float = 1.0,
|
|
|
|
):
|
|
|
|
r"""
|
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
|
|
instead.
|
|
|
|
image (`PIL.Image.Image`):
|
|
|
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
|
|
|
be masked out with `mask_image` and repainted according to `prompt`.
|
|
|
|
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
|
|
|
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
|
|
|
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
|
|
|
|
also be accepted as an image. The control image is automatically resized to fit the output image.
|
|
|
|
mask_image (`PIL.Image.Image`):
|
|
|
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
|
|
|
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
|
|
|
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
|
|
|
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
|
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
The height in pixels of the generated image.
|
|
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
The width in pixels of the generated image.
|
|
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
expense of slower inference.
|
|
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
|
usually at the expense of lower image quality.
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
|
to make generation deterministic.
|
|
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
|
|
argument.
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
The output format of the generate image. Choose between
|
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
|
|
plain tuple.
|
|
|
|
callback (`Callable`, *optional*):
|
|
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
|
|
called at every step.
|
|
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
|
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
|
|
|
`self.processor` in
|
|
|
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
|
|
|
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
|
|
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
|
|
to the residual in the original unet.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
|
|
(nsfw) content, according to the `safety_checker`.
|
|
|
|
"""
|
|
|
|
# 0. Default height and width to unet
|
|
|
|
height, width = self._default_height_width(height, width, control_image)
|
|
|
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
self.check_inputs(
|
|
|
|
prompt,
|
|
|
|
control_image,
|
|
|
|
height,
|
|
|
|
width,
|
|
|
|
callback_steps,
|
|
|
|
negative_prompt,
|
|
|
|
prompt_embeds,
|
|
|
|
negative_prompt_embeds,
|
|
|
|
)
|
|
|
|
|
|
|
|
# 2. Define call parameters
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
batch_size = 1
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
batch_size = len(prompt)
|
|
|
|
else:
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
# corresponds to doing no classifier free guidance.
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
# 3. Encode input prompt
|
|
|
|
prompt_embeds = self._encode_prompt(
|
|
|
|
prompt,
|
|
|
|
device,
|
|
|
|
num_images_per_prompt,
|
|
|
|
do_classifier_free_guidance,
|
|
|
|
negative_prompt,
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
)
|
|
|
|
|
|
|
|
# 4. Prepare image
|
|
|
|
control_image = self.prepare_image(
|
|
|
|
control_image,
|
|
|
|
width,
|
|
|
|
height,
|
|
|
|
batch_size * num_images_per_prompt,
|
|
|
|
num_images_per_prompt,
|
|
|
|
device,
|
|
|
|
self.controlnet.dtype,
|
|
|
|
)
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
control_image = torch.cat([control_image] * 2)
|
|
|
|
|
|
|
|
# 5. Prepare timesteps
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
|
|
|
|
# 6. Prepare latent variables
|
2023-05-13 07:45:27 +02:00
|
|
|
num_channels_latents = self.controlnet.config.in_channels
|
2023-03-19 15:40:23 +01:00
|
|
|
latents = self.prepare_latents(
|
|
|
|
batch_size * num_images_per_prompt,
|
|
|
|
num_channels_latents,
|
|
|
|
height,
|
|
|
|
width,
|
|
|
|
prompt_embeds.dtype,
|
|
|
|
device,
|
|
|
|
generator,
|
|
|
|
latents,
|
|
|
|
)
|
|
|
|
|
|
|
|
# EXTRA: prepare mask latents
|
|
|
|
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
|
|
|
|
mask, masked_image_latents = self.prepare_mask_latents(
|
|
|
|
mask,
|
|
|
|
masked_image,
|
|
|
|
batch_size * num_images_per_prompt,
|
|
|
|
height,
|
|
|
|
width,
|
|
|
|
prompt_embeds.dtype,
|
|
|
|
device,
|
|
|
|
generator,
|
|
|
|
do_classifier_free_guidance,
|
|
|
|
)
|
|
|
|
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
|
|
# 8. Denoising loop
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
for i, t in enumerate(timesteps):
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
|
|
latent_model_input = (
|
|
|
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
)
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(
|
|
|
|
latent_model_input, t
|
|
|
|
)
|
|
|
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
|
|
latent_model_input,
|
|
|
|
t,
|
|
|
|
encoder_hidden_states=prompt_embeds,
|
|
|
|
controlnet_cond=control_image,
|
|
|
|
return_dict=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
down_block_res_samples = [
|
|
|
|
down_block_res_sample * controlnet_conditioning_scale
|
|
|
|
for down_block_res_sample in down_block_res_samples
|
|
|
|
]
|
|
|
|
mid_block_res_sample *= controlnet_conditioning_scale
|
|
|
|
|
|
|
|
# predict the noise residual
|
|
|
|
latent_model_input = torch.cat(
|
|
|
|
[latent_model_input, mask, masked_image_latents], dim=1
|
|
|
|
)
|
|
|
|
noise_pred = self.unet(
|
|
|
|
latent_model_input,
|
|
|
|
t,
|
|
|
|
encoder_hidden_states=prompt_embeds,
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
|
|
).sample
|
|
|
|
|
|
|
|
# perform guidance
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
|
|
|
noise_pred_text - noise_pred_uncond
|
|
|
|
)
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
latents = self.scheduler.step(
|
|
|
|
noise_pred, t, latents, **extra_step_kwargs
|
|
|
|
).prev_sample
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
if i == len(timesteps) - 1 or (
|
|
|
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
|
|
|
):
|
|
|
|
progress_bar.update()
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
|
|
callback(i, t, latents)
|
|
|
|
|
|
|
|
# If we do sequential model offloading, let's offload unet and controlnet
|
|
|
|
# manually for max memory savings
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
self.unet.to("cpu")
|
|
|
|
self.controlnet.to("cpu")
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
if output_type == "latent":
|
|
|
|
image = latents
|
|
|
|
has_nsfw_concept = None
|
|
|
|
elif output_type == "pil":
|
|
|
|
# 8. Post-processing
|
|
|
|
image = self.decode_latents(latents)
|
|
|
|
|
|
|
|
# 9. Run safety checker
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(
|
|
|
|
image, device, prompt_embeds.dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
# 10. Convert to PIL
|
|
|
|
image = self.numpy_to_pil(image)
|
|
|
|
else:
|
|
|
|
# 8. Post-processing
|
|
|
|
image = self.decode_latents(latents)
|
|
|
|
|
|
|
|
# 9. Run safety checker
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(
|
|
|
|
image, device, prompt_embeds.dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
# Offload last model to CPU
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
self.final_offload_hook.offload()
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return (image, has_nsfw_concept)
|
|
|
|
|
|
|
|
return StableDiffusionPipelineOutput(
|
|
|
|
images=image, nsfw_content_detected=has_nsfw_concept
|
|
|
|
)
|