2022-04-15 18:11:51 +02:00
|
|
|
import abc
|
2022-07-14 10:49:03 +02:00
|
|
|
from typing import Optional
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
import cv2
|
|
|
|
import torch
|
2022-11-10 18:45:20 +01:00
|
|
|
import numpy as np
|
2022-04-15 18:11:51 +02:00
|
|
|
from loguru import logger
|
|
|
|
|
|
|
|
from lama_cleaner.helper import boxes_from_mask, resize_max_size, pad_img_to_modulo
|
|
|
|
from lama_cleaner.schema import Config, HDStrategy
|
|
|
|
|
|
|
|
|
|
|
|
class InpaintModel:
|
2022-07-14 10:49:03 +02:00
|
|
|
min_size: Optional[int] = None
|
2022-04-15 18:11:51 +02:00
|
|
|
pad_mod = 8
|
2022-07-14 10:49:03 +02:00
|
|
|
pad_to_square = False
|
2022-04-15 18:11:51 +02:00
|
|
|
|
2022-09-15 16:21:27 +02:00
|
|
|
def __init__(self, device, **kwargs):
|
2022-04-15 18:11:51 +02:00
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device:
|
|
|
|
"""
|
|
|
|
self.device = device
|
2022-09-15 16:21:27 +02:00
|
|
|
self.init_model(device, **kwargs)
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
@abc.abstractmethod
|
2022-09-15 16:21:27 +02:00
|
|
|
def init_model(self, device, **kwargs):
|
2022-04-15 18:11:51 +02:00
|
|
|
...
|
|
|
|
|
2022-04-17 17:31:12 +02:00
|
|
|
@staticmethod
|
|
|
|
@abc.abstractmethod
|
|
|
|
def is_downloaded() -> bool:
|
|
|
|
...
|
|
|
|
|
2022-04-15 18:11:51 +02:00
|
|
|
@abc.abstractmethod
|
|
|
|
def forward(self, image, mask, config: Config):
|
2022-07-14 10:49:03 +02:00
|
|
|
"""Input images and output images have same size
|
|
|
|
images: [H, W, C] RGB
|
2022-09-15 16:21:27 +02:00
|
|
|
masks: [H, W, 1] 255 为 masks 区域
|
2022-04-15 18:11:51 +02:00
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
...
|
|
|
|
|
|
|
|
def _pad_forward(self, image, mask, config: Config):
|
|
|
|
origin_height, origin_width = image.shape[:2]
|
2022-09-15 16:21:27 +02:00
|
|
|
pad_image = pad_img_to_modulo(
|
|
|
|
image, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
|
|
|
|
)
|
|
|
|
pad_mask = pad_img_to_modulo(
|
|
|
|
mask, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size
|
|
|
|
)
|
2022-07-14 10:49:03 +02:00
|
|
|
|
|
|
|
logger.info(f"final forward pad size: {pad_image.shape}")
|
|
|
|
|
|
|
|
result = self.forward(pad_image, pad_mask, config)
|
2022-04-15 18:11:51 +02:00
|
|
|
result = result[0:origin_height, 0:origin_width, :]
|
|
|
|
|
2022-11-25 02:29:20 +01:00
|
|
|
result, image, mask = self.forward_post_process(result, image, mask, config)
|
2022-11-10 18:45:20 +01:00
|
|
|
|
|
|
|
mask = mask[:, :, np.newaxis]
|
|
|
|
result = result * (mask / 255) + image[:, :, ::-1] * (1 - (mask / 255))
|
2022-04-15 18:11:51 +02:00
|
|
|
return result
|
|
|
|
|
2022-11-25 02:29:20 +01:00
|
|
|
def forward_post_process(self, result, image, mask, config):
|
|
|
|
return result, image, mask
|
|
|
|
|
2022-04-15 18:11:51 +02:00
|
|
|
@torch.no_grad()
|
|
|
|
def __call__(self, image, mask, config: Config):
|
|
|
|
"""
|
2022-07-14 10:49:03 +02:00
|
|
|
images: [H, W, C] RGB, not normalized
|
|
|
|
masks: [H, W]
|
2022-04-15 18:11:51 +02:00
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
|
|
|
inpaint_result = None
|
|
|
|
logger.info(f"hd_strategy: {config.hd_strategy}")
|
|
|
|
if config.hd_strategy == HDStrategy.CROP:
|
|
|
|
if max(image.shape) > config.hd_strategy_crop_trigger_size:
|
|
|
|
logger.info(f"Run crop strategy")
|
|
|
|
boxes = boxes_from_mask(mask)
|
|
|
|
crop_result = []
|
|
|
|
for box in boxes:
|
|
|
|
crop_image, crop_box = self._run_box(image, mask, box, config)
|
|
|
|
crop_result.append((crop_image, crop_box))
|
|
|
|
|
|
|
|
inpaint_result = image[:, :, ::-1]
|
|
|
|
for crop_image, crop_box in crop_result:
|
|
|
|
x1, y1, x2, y2 = crop_box
|
|
|
|
inpaint_result[y1:y2, x1:x2, :] = crop_image
|
|
|
|
|
|
|
|
elif config.hd_strategy == HDStrategy.RESIZE:
|
|
|
|
if max(image.shape) > config.hd_strategy_resize_limit:
|
|
|
|
origin_size = image.shape[:2]
|
2022-09-15 16:21:27 +02:00
|
|
|
downsize_image = resize_max_size(
|
|
|
|
image, size_limit=config.hd_strategy_resize_limit
|
|
|
|
)
|
|
|
|
downsize_mask = resize_max_size(
|
|
|
|
mask, size_limit=config.hd_strategy_resize_limit
|
|
|
|
)
|
|
|
|
|
|
|
|
logger.info(
|
|
|
|
f"Run resize strategy, origin size: {image.shape} forward size: {downsize_image.shape}"
|
|
|
|
)
|
|
|
|
inpaint_result = self._pad_forward(
|
|
|
|
downsize_image, downsize_mask, config
|
|
|
|
)
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
# only paste masked area result
|
2022-09-15 16:21:27 +02:00
|
|
|
inpaint_result = cv2.resize(
|
|
|
|
inpaint_result,
|
|
|
|
(origin_size[1], origin_size[0]),
|
|
|
|
interpolation=cv2.INTER_CUBIC,
|
|
|
|
)
|
2022-09-02 05:08:32 +02:00
|
|
|
original_pixel_indices = mask < 127
|
2022-09-15 16:21:27 +02:00
|
|
|
inpaint_result[original_pixel_indices] = image[:, :, ::-1][
|
|
|
|
original_pixel_indices
|
|
|
|
]
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
if inpaint_result is None:
|
|
|
|
inpaint_result = self._pad_forward(image, mask, config)
|
|
|
|
|
|
|
|
return inpaint_result
|
|
|
|
|
2022-09-04 10:00:42 +02:00
|
|
|
def _crop_box(self, image, mask, box, config: Config):
|
2022-04-15 18:11:51 +02:00
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1]
|
|
|
|
box: [left,top,right,bottom]
|
|
|
|
|
|
|
|
Returns:
|
2022-09-04 10:00:42 +02:00
|
|
|
BGR IMAGE, (l, r, r, b)
|
2022-04-15 18:11:51 +02:00
|
|
|
"""
|
|
|
|
box_h = box[3] - box[1]
|
|
|
|
box_w = box[2] - box[0]
|
|
|
|
cx = (box[0] + box[2]) // 2
|
|
|
|
cy = (box[1] + box[3]) // 2
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
|
|
|
|
w = box_w + config.hd_strategy_crop_margin * 2
|
|
|
|
h = box_h + config.hd_strategy_crop_margin * 2
|
|
|
|
|
2022-08-22 17:23:48 +02:00
|
|
|
_l = cx - w // 2
|
|
|
|
_r = cx + w // 2
|
|
|
|
_t = cy - h // 2
|
|
|
|
_b = cy + h // 2
|
|
|
|
|
|
|
|
l = max(_l, 0)
|
|
|
|
r = min(_r, img_w)
|
|
|
|
t = max(_t, 0)
|
|
|
|
b = min(_b, img_h)
|
|
|
|
|
2022-09-04 10:00:42 +02:00
|
|
|
# try to get more context when crop around image edge
|
2022-08-22 17:23:48 +02:00
|
|
|
if _l < 0:
|
|
|
|
r += abs(_l)
|
|
|
|
if _r > img_w:
|
2022-09-15 16:21:27 +02:00
|
|
|
l -= _r - img_w
|
2022-08-22 17:23:48 +02:00
|
|
|
if _t < 0:
|
|
|
|
b += abs(_t)
|
|
|
|
if _b > img_h:
|
2022-09-15 16:21:27 +02:00
|
|
|
t -= _b - img_h
|
2022-08-22 17:23:48 +02:00
|
|
|
|
|
|
|
l = max(l, 0)
|
|
|
|
r = min(r, img_w)
|
|
|
|
t = max(t, 0)
|
|
|
|
b = min(b, img_h)
|
2022-04-15 18:11:51 +02:00
|
|
|
|
|
|
|
crop_img = image[t:b, l:r, :]
|
|
|
|
crop_mask = mask[t:b, l:r]
|
|
|
|
|
|
|
|
logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}")
|
|
|
|
|
2022-09-04 10:00:42 +02:00
|
|
|
return crop_img, crop_mask, [l, t, r, b]
|
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
def _calculate_cdf(self, histogram):
|
|
|
|
cdf = histogram.cumsum()
|
|
|
|
normalized_cdf = cdf / float(cdf.max())
|
|
|
|
return normalized_cdf
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
def _calculate_lookup(self, source_cdf, reference_cdf):
|
|
|
|
lookup_table = np.zeros(256)
|
|
|
|
lookup_val = 0
|
|
|
|
for source_index, source_val in enumerate(source_cdf):
|
|
|
|
for reference_index, reference_val in enumerate(reference_cdf):
|
|
|
|
if reference_val >= source_val:
|
|
|
|
lookup_val = reference_index
|
|
|
|
break
|
|
|
|
lookup_table[source_index] = lookup_val
|
|
|
|
return lookup_table
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
def _match_histograms(self, source, reference, mask):
|
|
|
|
transformed_channels = []
|
|
|
|
for channel in range(source.shape[-1]):
|
|
|
|
source_channel = source[:, :, channel]
|
|
|
|
reference_channel = reference[:, :, channel]
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
# only calculate histograms for non-masked parts
|
2022-11-25 02:29:20 +01:00
|
|
|
source_histogram, _ = np.histogram(source_channel[mask == 0], 256, [0, 256])
|
|
|
|
reference_histogram, _ = np.histogram(reference_channel[mask == 0], 256, [0, 256])
|
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
source_cdf = self._calculate_cdf(source_histogram)
|
|
|
|
reference_cdf = self._calculate_cdf(reference_histogram)
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
lookup = self._calculate_lookup(source_cdf, reference_cdf)
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
transformed_channels.append(cv2.LUT(source_channel, lookup))
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
result = cv2.merge(transformed_channels)
|
|
|
|
result = cv2.convertScaleAbs(result)
|
2022-11-25 02:29:20 +01:00
|
|
|
|
2022-11-23 23:50:58 +01:00
|
|
|
return result
|
|
|
|
|
2022-12-10 15:06:15 +01:00
|
|
|
def _apply_cropper(self, image, mask, config: Config):
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
l, t, w, h = (
|
|
|
|
config.croper_x,
|
|
|
|
config.croper_y,
|
|
|
|
config.croper_width,
|
|
|
|
config.croper_height,
|
|
|
|
)
|
|
|
|
r = l + w
|
|
|
|
b = t + h
|
|
|
|
|
|
|
|
l = max(l, 0)
|
|
|
|
r = min(r, img_w)
|
|
|
|
t = max(t, 0)
|
|
|
|
b = min(b, img_h)
|
|
|
|
|
|
|
|
crop_img = image[t:b, l:r, :]
|
|
|
|
crop_mask = mask[t:b, l:r]
|
|
|
|
return crop_img, crop_mask, (l, t, r, b)
|
|
|
|
|
2022-09-04 10:00:42 +02:00
|
|
|
def _run_box(self, image, mask, box, config: Config):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1]
|
|
|
|
box: [left,top,right,bottom]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
BGR IMAGE
|
|
|
|
"""
|
|
|
|
crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)
|
|
|
|
|
2022-04-15 18:11:51 +02:00
|
|
|
return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]
|