403 lines
17 KiB
Python
403 lines
17 KiB
Python
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from typing import Any, Dict, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
||
|
from diffusers.utils import (
|
||
|
USE_PEFT_BACKEND,
|
||
|
deprecate,
|
||
|
logging,
|
||
|
scale_lora_layers,
|
||
|
unscale_lora_layers,
|
||
|
)
|
||
|
|
||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
|
||
|
|
||
|
def UNet2DConditionModel_forward(
|
||
|
self,
|
||
|
sample: torch.FloatTensor,
|
||
|
timestep: Union[torch.Tensor, float, int],
|
||
|
encoder_hidden_states: torch.Tensor,
|
||
|
class_labels: Optional[torch.Tensor] = None,
|
||
|
timestep_cond: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||
|
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
||
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
return_dict: bool = True,
|
||
|
down_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
|
||
|
mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None,
|
||
|
up_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
|
||
|
) -> Union[UNet2DConditionOutput, Tuple]:
|
||
|
r"""
|
||
|
The [`UNet2DConditionModel`] forward method.
|
||
|
|
||
|
Args:
|
||
|
sample (`torch.FloatTensor`):
|
||
|
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
||
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
||
|
encoder_hidden_states (`torch.FloatTensor`):
|
||
|
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
||
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
||
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||
|
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
||
|
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
||
|
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
||
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||
|
negative values to the attention scores corresponding to "discard" tokens.
|
||
|
cross_attention_kwargs (`dict`, *optional*):
|
||
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||
|
`self.processor` in
|
||
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
|
added_cond_kwargs: (`dict`, *optional*):
|
||
|
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
||
|
are passed along to the UNet blocks.
|
||
|
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
||
|
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
||
|
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
||
|
A tensor that if specified is added to the residual of the middle unet block.
|
||
|
encoder_attention_mask (`torch.Tensor`):
|
||
|
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||
|
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
||
|
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
||
|
tuple.
|
||
|
cross_attention_kwargs (`dict`, *optional*):
|
||
|
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
||
|
added_cond_kwargs: (`dict`, *optional*):
|
||
|
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
||
|
are passed along to the UNet blocks.
|
||
|
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||
|
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
||
|
example from ControlNet side model(s)
|
||
|
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
||
|
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
||
|
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||
|
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
||
|
|
||
|
Returns:
|
||
|
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
||
|
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
||
|
a `tuple` is returned where the first element is the sample tensor.
|
||
|
"""
|
||
|
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
||
|
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
||
|
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
||
|
# on the fly if necessary.
|
||
|
default_overall_up_factor = 2**self.num_upsamplers
|
||
|
|
||
|
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
||
|
forward_upsample_size = False
|
||
|
upsample_size = None
|
||
|
|
||
|
for dim in sample.shape[-2:]:
|
||
|
if dim % default_overall_up_factor != 0:
|
||
|
# Forward upsample size to force interpolation output size.
|
||
|
forward_upsample_size = True
|
||
|
break
|
||
|
|
||
|
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
||
|
# expects mask of shape:
|
||
|
# [batch, key_tokens]
|
||
|
# adds singleton query_tokens dimension:
|
||
|
# [batch, 1, key_tokens]
|
||
|
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||
|
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||
|
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||
|
if attention_mask is not None:
|
||
|
# assume that mask is expressed as:
|
||
|
# (1 = keep, 0 = discard)
|
||
|
# convert mask into a bias that can be added to attention scores:
|
||
|
# (keep = +0, discard = -10000.0)
|
||
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||
|
attention_mask = attention_mask.unsqueeze(1)
|
||
|
|
||
|
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||
|
if encoder_attention_mask is not None:
|
||
|
encoder_attention_mask = (
|
||
|
1 - encoder_attention_mask.to(sample.dtype)
|
||
|
) * -10000.0
|
||
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||
|
|
||
|
# 0. center input if necessary
|
||
|
if self.config.center_input_sample:
|
||
|
sample = 2 * sample - 1.0
|
||
|
|
||
|
# 1. time
|
||
|
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
||
|
emb = self.time_embedding(t_emb, timestep_cond)
|
||
|
aug_emb = None
|
||
|
|
||
|
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
||
|
if class_emb is not None:
|
||
|
if self.config.class_embeddings_concat:
|
||
|
emb = torch.cat([emb, class_emb], dim=-1)
|
||
|
else:
|
||
|
emb = emb + class_emb
|
||
|
|
||
|
aug_emb = self.get_aug_embed(
|
||
|
emb=emb,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
added_cond_kwargs=added_cond_kwargs,
|
||
|
)
|
||
|
if self.config.addition_embed_type == "image_hint":
|
||
|
aug_emb, hint = aug_emb
|
||
|
sample = torch.cat([sample, hint], dim=1)
|
||
|
|
||
|
emb = emb + aug_emb if aug_emb is not None else emb
|
||
|
|
||
|
if self.time_embed_act is not None:
|
||
|
emb = self.time_embed_act(emb)
|
||
|
|
||
|
encoder_hidden_states = self.process_encoder_hidden_states(
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
added_cond_kwargs=added_cond_kwargs,
|
||
|
)
|
||
|
|
||
|
# 2. pre-process
|
||
|
sample = self.conv_in(sample)
|
||
|
|
||
|
# 2.5 GLIGEN position net
|
||
|
if (
|
||
|
cross_attention_kwargs is not None
|
||
|
and cross_attention_kwargs.get("gligen", None) is not None
|
||
|
):
|
||
|
cross_attention_kwargs = cross_attention_kwargs.copy()
|
||
|
gligen_args = cross_attention_kwargs.pop("gligen")
|
||
|
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
||
|
|
||
|
# 3. down
|
||
|
lora_scale = (
|
||
|
cross_attention_kwargs.get("scale", 1.0)
|
||
|
if cross_attention_kwargs is not None
|
||
|
else 1.0
|
||
|
)
|
||
|
if USE_PEFT_BACKEND:
|
||
|
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||
|
scale_lora_layers(self, lora_scale)
|
||
|
|
||
|
is_controlnet = (
|
||
|
mid_block_additional_residual is not None
|
||
|
and down_block_additional_residuals is not None
|
||
|
)
|
||
|
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
||
|
is_adapter = down_intrablock_additional_residuals is not None
|
||
|
# maintain backward compatibility for legacy usage, where
|
||
|
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
||
|
# but can only use one or the other
|
||
|
is_brushnet = (
|
||
|
down_block_add_samples is not None
|
||
|
and mid_block_add_sample is not None
|
||
|
and up_block_add_samples is not None
|
||
|
)
|
||
|
if (
|
||
|
not is_adapter
|
||
|
and mid_block_additional_residual is None
|
||
|
and down_block_additional_residuals is not None
|
||
|
):
|
||
|
deprecate(
|
||
|
"T2I should not use down_block_additional_residuals",
|
||
|
"1.3.0",
|
||
|
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
||
|
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
||
|
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
||
|
standard_warn=False,
|
||
|
)
|
||
|
down_intrablock_additional_residuals = down_block_additional_residuals
|
||
|
is_adapter = True
|
||
|
|
||
|
down_block_res_samples = (sample,)
|
||
|
|
||
|
if is_brushnet:
|
||
|
sample = sample + down_block_add_samples.pop(0)
|
||
|
|
||
|
for downsample_block in self.down_blocks:
|
||
|
if (
|
||
|
hasattr(downsample_block, "has_cross_attention")
|
||
|
and downsample_block.has_cross_attention
|
||
|
):
|
||
|
# For t2i-adapter CrossAttnDownBlock2D
|
||
|
additional_residuals = {}
|
||
|
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||
|
additional_residuals["additional_residuals"] = (
|
||
|
down_intrablock_additional_residuals.pop(0)
|
||
|
)
|
||
|
|
||
|
if is_brushnet and len(down_block_add_samples) > 0:
|
||
|
additional_residuals["down_block_add_samples"] = [
|
||
|
down_block_add_samples.pop(0)
|
||
|
for _ in range(
|
||
|
len(downsample_block.resnets)
|
||
|
+ (downsample_block.downsamplers != None)
|
||
|
)
|
||
|
]
|
||
|
|
||
|
sample, res_samples = downsample_block(
|
||
|
hidden_states=sample,
|
||
|
temb=emb,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
**additional_residuals,
|
||
|
)
|
||
|
else:
|
||
|
additional_residuals = {}
|
||
|
if is_brushnet and len(down_block_add_samples) > 0:
|
||
|
additional_residuals["down_block_add_samples"] = [
|
||
|
down_block_add_samples.pop(0)
|
||
|
for _ in range(
|
||
|
len(downsample_block.resnets)
|
||
|
+ (downsample_block.downsamplers != None)
|
||
|
)
|
||
|
]
|
||
|
|
||
|
sample, res_samples = downsample_block(
|
||
|
hidden_states=sample,
|
||
|
temb=emb,
|
||
|
scale=lora_scale,
|
||
|
**additional_residuals,
|
||
|
)
|
||
|
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||
|
sample += down_intrablock_additional_residuals.pop(0)
|
||
|
|
||
|
down_block_res_samples += res_samples
|
||
|
|
||
|
if is_controlnet:
|
||
|
new_down_block_res_samples = ()
|
||
|
|
||
|
for down_block_res_sample, down_block_additional_residual in zip(
|
||
|
down_block_res_samples, down_block_additional_residuals
|
||
|
):
|
||
|
down_block_res_sample = (
|
||
|
down_block_res_sample + down_block_additional_residual
|
||
|
)
|
||
|
new_down_block_res_samples = new_down_block_res_samples + (
|
||
|
down_block_res_sample,
|
||
|
)
|
||
|
|
||
|
down_block_res_samples = new_down_block_res_samples
|
||
|
|
||
|
# 4. mid
|
||
|
if self.mid_block is not None:
|
||
|
if (
|
||
|
hasattr(self.mid_block, "has_cross_attention")
|
||
|
and self.mid_block.has_cross_attention
|
||
|
):
|
||
|
sample = self.mid_block(
|
||
|
sample,
|
||
|
emb,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
)
|
||
|
else:
|
||
|
sample = self.mid_block(sample, emb)
|
||
|
|
||
|
# To support T2I-Adapter-XL
|
||
|
if (
|
||
|
is_adapter
|
||
|
and len(down_intrablock_additional_residuals) > 0
|
||
|
and sample.shape == down_intrablock_additional_residuals[0].shape
|
||
|
):
|
||
|
sample += down_intrablock_additional_residuals.pop(0)
|
||
|
|
||
|
if is_controlnet:
|
||
|
sample = sample + mid_block_additional_residual
|
||
|
|
||
|
if is_brushnet:
|
||
|
sample = sample + mid_block_add_sample
|
||
|
|
||
|
# 5. up
|
||
|
for i, upsample_block in enumerate(self.up_blocks):
|
||
|
is_final_block = i == len(self.up_blocks) - 1
|
||
|
|
||
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
||
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
||
|
|
||
|
# if we have not reached the final block and need to forward the
|
||
|
# upsample size, we do it here
|
||
|
if not is_final_block and forward_upsample_size:
|
||
|
upsample_size = down_block_res_samples[-1].shape[2:]
|
||
|
|
||
|
if (
|
||
|
hasattr(upsample_block, "has_cross_attention")
|
||
|
and upsample_block.has_cross_attention
|
||
|
):
|
||
|
additional_residuals = {}
|
||
|
if is_brushnet and len(up_block_add_samples) > 0:
|
||
|
additional_residuals["up_block_add_samples"] = [
|
||
|
up_block_add_samples.pop(0)
|
||
|
for _ in range(
|
||
|
len(upsample_block.resnets)
|
||
|
+ (upsample_block.upsamplers != None)
|
||
|
)
|
||
|
]
|
||
|
|
||
|
sample = upsample_block(
|
||
|
hidden_states=sample,
|
||
|
temb=emb,
|
||
|
res_hidden_states_tuple=res_samples,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
upsample_size=upsample_size,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
**additional_residuals,
|
||
|
)
|
||
|
else:
|
||
|
additional_residuals = {}
|
||
|
if is_brushnet and len(up_block_add_samples) > 0:
|
||
|
additional_residuals["up_block_add_samples"] = [
|
||
|
up_block_add_samples.pop(0)
|
||
|
for _ in range(
|
||
|
len(upsample_block.resnets)
|
||
|
+ (upsample_block.upsamplers != None)
|
||
|
)
|
||
|
]
|
||
|
|
||
|
sample = upsample_block(
|
||
|
hidden_states=sample,
|
||
|
temb=emb,
|
||
|
res_hidden_states_tuple=res_samples,
|
||
|
upsample_size=upsample_size,
|
||
|
scale=lora_scale,
|
||
|
**additional_residuals,
|
||
|
)
|
||
|
|
||
|
# 6. post-process
|
||
|
if self.conv_norm_out:
|
||
|
sample = self.conv_norm_out(sample)
|
||
|
sample = self.conv_act(sample)
|
||
|
sample = self.conv_out(sample)
|
||
|
|
||
|
if USE_PEFT_BACKEND:
|
||
|
# remove `lora_scale` from each PEFT layer
|
||
|
unscale_lora_layers(self, lora_scale)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sample,)
|
||
|
|
||
|
return UNet2DConditionOutput(sample=sample)
|