IOPaint/lama_cleaner/model/zits.py

428 lines
14 KiB
Python
Raw Normal View History

2022-07-14 10:49:03 +02:00
import os
import time
import cv2
import skimage
import torch
import torch.nn.functional as F
from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
from lama_cleaner.schema import Config
import numpy as np
from lama_cleaner.model.base import InpaintModel
ZITS_INPAINT_MODEL_URL = os.environ.get(
"ZITS_INPAINT_MODEL_URL",
2022-07-18 14:35:55 +02:00
"https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
2022-07-14 10:49:03 +02:00
)
ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
"ZITS_EDGE_LINE_MODEL_URL",
2022-07-18 14:35:55 +02:00
"https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
2022-07-14 10:49:03 +02:00
)
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
"ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
2022-07-18 14:35:55 +02:00
"https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
2022-07-14 10:49:03 +02:00
)
ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
"ZITS_WIRE_FRAME_MODEL_URL",
2022-07-18 14:35:55 +02:00
"https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
2022-07-14 10:49:03 +02:00
)
def resize(img, height, width, center_crop=False):
imgh, imgw = img.shape[0:2]
if center_crop and imgh != imgw:
# center crop
side = np.minimum(imgh, imgw)
j = (imgh - side) // 2
i = (imgw - side) // 2
2022-07-19 15:47:21 +02:00
img = img[j : j + side, i : i + side, ...]
2022-07-14 10:49:03 +02:00
if imgh > height and imgw > width:
inter = cv2.INTER_AREA
else:
inter = cv2.INTER_LINEAR
img = cv2.resize(img, (height, width), interpolation=inter)
return img
def to_tensor(img, scale=True, norm=False):
if img.ndim == 2:
img = img[:, :, np.newaxis]
c = img.shape[-1]
if scale:
img_t = torch.from_numpy(img).permute(2, 0, 1).float().div(255)
else:
img_t = torch.from_numpy(img).permute(2, 0, 1).float()
if norm:
mean = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
std = torch.tensor([0.5, 0.5, 0.5]).reshape(c, 1, 1)
img_t = (img_t - mean) / std
return img_t
def load_masked_position_encoding(mask):
ones_filter = np.ones((3, 3), dtype=np.float32)
d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
str_size = 256
pos_num = 128
ori_mask = mask.copy()
ori_h, ori_w = ori_mask.shape[0:2]
ori_mask = ori_mask / 255
mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
mask[mask > 0] = 255
h, w = mask.shape[0:2]
mask3 = mask.copy()
mask3 = 1.0 - (mask3 / 255.0)
pos = np.zeros((h, w), dtype=np.int32)
direct = np.zeros((h, w, 4), dtype=np.int32)
i = 0
while np.sum(1 - mask3) > 0:
i += 1
mask3_ = cv2.filter2D(mask3, -1, ones_filter)
mask3_[mask3_ > 0] = 1
sub_mask = mask3_ - mask3
pos[sub_mask == 1] = i
m = cv2.filter2D(mask3, -1, d_filter1)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 0] = 1
m = cv2.filter2D(mask3, -1, d_filter2)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 1] = 1
m = cv2.filter2D(mask3, -1, d_filter3)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 2] = 1
m = cv2.filter2D(mask3, -1, d_filter4)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 3] = 1
mask3 = mask3_
abs_pos = pos.copy()
rel_pos = pos / (str_size / 2) # to 0~1 maybe larger than 1
rel_pos = (rel_pos * pos_num).astype(np.int32)
rel_pos = np.clip(rel_pos, 0, pos_num - 1)
if ori_w != w or ori_h != h:
rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
rel_pos[ori_mask == 0] = 0
direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
direct[ori_mask == 0, :] = 0
return rel_pos, abs_pos, direct
def load_image(img, mask, device, sigma256=3.0):
"""
Args:
img: [H, W, C] RGB
mask: [H, W] 255 masks 区域
sigma256:
Returns:
"""
h, w, _ = img.shape
imgh, imgw = img.shape[0:2]
img_256 = resize(img, 256, 256)
mask = (mask > 127).astype(np.uint8) * 255
mask_256 = cv2.resize(mask, (256, 256), interpolation=cv2.INTER_AREA)
mask_256[mask_256 > 0] = 255
mask_512 = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_AREA)
mask_512[mask_512 > 0] = 255
2022-07-18 14:35:55 +02:00
# original skimage implemention
# https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
# low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtypes max.
# high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtypes max.
gray_256 = skimage.color.rgb2gray(img_256)
edge_256 = skimage.feature.canny(gray_256, sigma=sigma256, mask=None).astype(float)
# cv2.imwrite("skimage_gray.jpg", (_gray_256*255).astype(np.uint8))
# cv2.imwrite("skimage_edge.jpg", (_edge_256*255).astype(np.uint8))
# gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
# gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(3,3), sigmaX=sigma256, sigmaY=sigma256)
# edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
# cv2.imwrite("edge.jpg", edge_256)
2022-07-14 10:49:03 +02:00
# line
img_512 = resize(img, 512, 512)
rel_pos, abs_pos, direct = load_masked_position_encoding(mask)
batch = dict()
batch["images"] = to_tensor(img.copy()).unsqueeze(0).to(device)
batch["img_256"] = to_tensor(img_256, norm=True).unsqueeze(0).to(device)
batch["masks"] = to_tensor(mask).unsqueeze(0).to(device)
batch["mask_256"] = to_tensor(mask_256).unsqueeze(0).to(device)
batch["mask_512"] = to_tensor(mask_512).unsqueeze(0).to(device)
batch["edge_256"] = to_tensor(edge_256, scale=False).unsqueeze(0).to(device)
batch["img_512"] = to_tensor(img_512).unsqueeze(0).to(device)
batch["rel_pos"] = torch.LongTensor(rel_pos).unsqueeze(0).to(device)
batch["abs_pos"] = torch.LongTensor(abs_pos).unsqueeze(0).to(device)
batch["direct"] = torch.LongTensor(direct).unsqueeze(0).to(device)
batch["h"] = imgh
batch["w"] = imgw
return batch
def to_device(data, device):
if isinstance(data, torch.Tensor):
return data.to(device)
if isinstance(data, dict):
for key in data:
if isinstance(data[key], torch.Tensor):
data[key] = data[key].to(device)
return data
if isinstance(data, list):
return [to_device(d, device) for d in data]
class ZITS(InpaintModel):
min_size = 256
pad_mod = 32
pad_to_square = True
2022-09-22 16:45:24 +02:00
def __init__(self, device, **kwargs):
2022-07-14 10:49:03 +02:00
"""
Args:
device:
"""
super().__init__(device)
self.device = device
self.sample_edge_line_iterations = 1
2022-09-15 16:21:27 +02:00
def init_model(self, device, **kwargs):
2022-07-14 10:49:03 +02:00
self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device)
self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device)
2022-07-19 15:47:21 +02:00
self.structure_upsample = load_jit_model(
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device
)
2022-07-14 10:49:03 +02:00
self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device)
@staticmethod
def is_downloaded() -> bool:
model_paths = [
get_cache_path_by_url(ZITS_WIRE_FRAME_MODEL_URL),
get_cache_path_by_url(ZITS_EDGE_LINE_MODEL_URL),
2022-07-19 15:47:21 +02:00
get_cache_path_by_url(ZITS_STRUCTURE_UPSAMPLE_MODEL_URL),
2022-07-14 10:49:03 +02:00
get_cache_path_by_url(ZITS_INPAINT_MODEL_URL),
]
return all([os.path.exists(it) for it in model_paths])
def wireframe_edge_and_line(self, items, enable: bool):
# 最终向 items 中添加 edge 和 line key
if not enable:
2022-07-15 11:51:27 +02:00
items["edge"] = torch.zeros_like(items["masks"])
items["line"] = torch.zeros_like(items["masks"])
2022-07-14 10:49:03 +02:00
return
start = time.time()
try:
line_256 = self.wireframe_forward(
items["img_512"],
h=256,
w=256,
masks=items["mask_512"],
mask_th=0.85,
)
except:
line_256 = torch.zeros_like(items["mask_256"])
print(f"wireframe_forward time: {(time.time() - start) * 1000:.2f}ms")
# np_line = (line[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("line.jpg", np_line)
start = time.time()
edge_pred, line_pred = self.sample_edge_line_logits(
context=[items["img_256"], items["edge_256"], line_256],
mask=items["mask_256"].clone(),
iterations=self.sample_edge_line_iterations,
add_v=0.05,
mul_v=4,
)
print(f"sample_edge_line_logits time: {(time.time() - start) * 1000:.2f}ms")
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("edge_pred.jpg", np_edge_pred)
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("line_pred.jpg", np_line_pred)
# exit()
input_size = min(items["h"], items["w"])
2022-07-19 15:47:21 +02:00
if input_size != 256 and input_size > 256:
while edge_pred.shape[2] < input_size:
edge_pred = self.structure_upsample(edge_pred)
edge_pred = torch.sigmoid((edge_pred + 2) * 2)
line_pred = self.structure_upsample(line_pred)
line_pred = torch.sigmoid((line_pred + 2) * 2)
edge_pred = F.interpolate(
edge_pred,
size=(input_size, input_size),
mode="bilinear",
align_corners=False,
)
line_pred = F.interpolate(
line_pred,
size=(input_size, input_size),
mode="bilinear",
align_corners=False,
)
2022-07-14 10:49:03 +02:00
# np_edge_pred = (edge_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("edge_pred_upsample.jpg", np_edge_pred)
# np_line_pred = (line_pred[0][0].numpy() * 255).astype(np.uint8)
# cv2.imwrite("line_pred_upsample.jpg", np_line_pred)
# exit()
items["edge"] = edge_pred.detach()
items["line"] = line_pred.detach()
@torch.no_grad()
def forward(self, image, mask, config: Config):
"""Input images and output images have same size
images: [H, W, C] RGB
masks: [H, W]
return: BGR IMAGE
"""
2022-07-15 11:51:27 +02:00
mask = mask[:, :, 0]
2022-07-14 10:49:03 +02:00
items = load_image(image, mask, device=self.device)
self.wireframe_edge_and_line(items, config.zits_wireframe)
2022-07-19 15:47:21 +02:00
inpainted_image = self.inpaint(
items["images"],
items["masks"],
items["edge"],
items["line"],
items["rel_pos"],
items["direct"],
)
2022-07-14 10:49:03 +02:00
inpainted_image = inpainted_image * 255.0
2022-07-19 15:47:21 +02:00
inpainted_image = (
inpainted_image.cpu().permute(0, 2, 3, 1)[0].numpy().astype(np.uint8)
)
2022-07-14 10:49:03 +02:00
inpainted_image = inpainted_image[:, :, ::-1]
# cv2.imwrite("inpainted.jpg", inpainted_image)
# exit()
return inpainted_image
def wireframe_forward(self, images, h, w, masks, mask_th=0.925):
lcnn_mean = torch.tensor([109.730, 103.832, 98.681]).reshape(1, 3, 1, 1)
lcnn_std = torch.tensor([22.275, 22.124, 23.229]).reshape(1, 3, 1, 1)
images = images * 255.0
# the masks value of lcnn is 127.5
masked_images = images * (1 - masks) + torch.ones_like(images) * masks * 127.5
masked_images = (masked_images - lcnn_mean) / lcnn_std
def to_int(x):
return tuple(map(int, x))
lines_tensor = []
lmap = np.zeros((h, w))
output_masked = self.wireframe(masked_images)
output_masked = to_device(output_masked, "cpu")
if output_masked["num_proposals"] == 0:
lines_masked = []
scores_masked = []
else:
lines_masked = output_masked["lines_pred"].numpy()
lines_masked = [
[line[1] * h, line[0] * w, line[3] * h, line[2] * w]
for line in lines_masked
]
scores_masked = output_masked["lines_score"].numpy()
for line, score in zip(lines_masked, scores_masked):
if score > mask_th:
rr, cc, value = skimage.draw.line_aa(
*to_int(line[0:2]), *to_int(line[2:4])
)
lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
lines_tensor.append(to_tensor(lmap).unsqueeze(0))
lines_tensor = torch.cat(lines_tensor, dim=0)
return lines_tensor.detach().to(self.device)
2022-07-19 15:47:21 +02:00
def sample_edge_line_logits(
self, context, mask=None, iterations=1, add_v=0, mul_v=4
):
2022-07-14 10:49:03 +02:00
[img, edge, line] = context
img = img * (1 - mask)
edge = edge * (1 - mask)
line = line * (1 - mask)
for i in range(iterations):
edge_logits, line_logits = self.edge_line(img, edge, line, masks=mask)
edge_pred = torch.sigmoid(edge_logits)
line_pred = torch.sigmoid((line_logits + add_v) * mul_v)
edge = edge + edge_pred * mask
edge[edge >= 0.25] = 1
edge[edge < 0.25] = 0
line = line + line_pred * mask
b, _, h, w = edge_pred.shape
edge_pred = edge_pred.reshape(b, -1, 1)
line_pred = line_pred.reshape(b, -1, 1)
mask = mask.reshape(b, -1)
edge_probs = torch.cat([1 - edge_pred, edge_pred], dim=-1)
line_probs = torch.cat([1 - line_pred, line_pred], dim=-1)
edge_probs[:, :, 1] += 0.5
line_probs[:, :, 1] += 0.5
edge_max_probs = edge_probs.max(dim=-1)[0] + (1 - mask) * (-100)
line_max_probs = line_probs.max(dim=-1)[0] + (1 - mask) * (-100)
2022-07-19 15:47:21 +02:00
indices = torch.sort(
edge_max_probs + line_max_probs, dim=-1, descending=True
)[1]
2022-07-14 10:49:03 +02:00
for ii in range(b):
keep = int((i + 1) / iterations * torch.sum(mask[ii, ...]))
assert torch.sum(mask[ii][indices[ii, :keep]]) == keep, "Error!!!"
mask[ii][indices[ii, :keep]] = 0
mask = mask.reshape(b, 1, h, w)
edge = edge * (1 - mask)
line = line * (1 - mask)
edge, line = edge.to(torch.float32), line.to(torch.float32)
return edge, line