1776 lines
86 KiB
Python
1776 lines
86 KiB
Python
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
|
||
|
|
||
|
import inspect
|
||
|
import warnings
|
||
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import PIL.Image
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
||
|
|
||
|
from diffusers.image_processor import VaeImageProcessor
|
||
|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
||
|
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
||
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||
|
from diffusers.utils import (
|
||
|
is_accelerate_available,
|
||
|
is_accelerate_version,
|
||
|
logging,
|
||
|
replace_example_docstring,
|
||
|
)
|
||
|
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module
|
||
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||
|
from diffusers.pipelines.controlnet import MultiControlNetModel
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
|
||
|
|
||
|
EXAMPLE_DOC_STRING = """
|
||
|
Examples:
|
||
|
```py
|
||
|
>>> # !pip install transformers accelerate
|
||
|
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
|
||
|
>>> from diffusers.utils import load_image
|
||
|
>>> import numpy as np
|
||
|
>>> import torch
|
||
|
|
||
|
>>> init_image = load_image(
|
||
|
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
|
||
|
... )
|
||
|
>>> init_image = init_image.resize((512, 512))
|
||
|
|
||
|
>>> generator = torch.Generator(device="cpu").manual_seed(1)
|
||
|
|
||
|
>>> mask_image = load_image(
|
||
|
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
|
||
|
... )
|
||
|
>>> mask_image = mask_image.resize((512, 512))
|
||
|
|
||
|
|
||
|
>>> def make_inpaint_condition(image, image_mask):
|
||
|
... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
||
|
... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
||
|
|
||
|
... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
||
|
... image[image_mask > 0.5] = -1.0 # set as masked pixel
|
||
|
... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
||
|
... image = torch.from_numpy(image)
|
||
|
... return image
|
||
|
|
||
|
|
||
|
>>> control_image = make_inpaint_condition(init_image, mask_image)
|
||
|
|
||
|
>>> controlnet = ControlNetModel.from_pretrained(
|
||
|
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
|
||
|
... )
|
||
|
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
||
|
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||
|
... )
|
||
|
|
||
|
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
||
|
>>> pipe.enable_model_cpu_offload()
|
||
|
|
||
|
>>> # generate image
|
||
|
>>> image = pipe(
|
||
|
... "a handsome man with ray-ban sunglasses",
|
||
|
... num_inference_steps=20,
|
||
|
... generator=generator,
|
||
|
... eta=1.0,
|
||
|
... image=init_image,
|
||
|
... mask_image=mask_image,
|
||
|
... control_image=control_image,
|
||
|
... ).images[0]
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
|
||
|
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
|
||
|
"""
|
||
|
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
||
|
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
||
|
``image`` and ``1`` for the ``mask``.
|
||
|
|
||
|
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
||
|
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
||
|
|
||
|
Args:
|
||
|
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
||
|
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
||
|
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
||
|
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
||
|
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
||
|
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
||
|
|
||
|
|
||
|
Raises:
|
||
|
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
||
|
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
||
|
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
||
|
(ot the other way around).
|
||
|
|
||
|
Returns:
|
||
|
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
||
|
dimensions: ``batch x channels x height x width``.
|
||
|
"""
|
||
|
|
||
|
if image is None:
|
||
|
raise ValueError("`image` input cannot be undefined.")
|
||
|
|
||
|
if mask is None:
|
||
|
raise ValueError("`mask_image` input cannot be undefined.")
|
||
|
|
||
|
if isinstance(image, torch.Tensor):
|
||
|
if not isinstance(mask, torch.Tensor):
|
||
|
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
||
|
|
||
|
# Batch single image
|
||
|
if image.ndim == 3:
|
||
|
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
||
|
image = image.unsqueeze(0)
|
||
|
|
||
|
# Batch and add channel dim for single mask
|
||
|
if mask.ndim == 2:
|
||
|
mask = mask.unsqueeze(0).unsqueeze(0)
|
||
|
|
||
|
# Batch single mask or add channel dim
|
||
|
if mask.ndim == 3:
|
||
|
# Single batched mask, no channel dim or single mask not batched but channel dim
|
||
|
if mask.shape[0] == 1:
|
||
|
mask = mask.unsqueeze(0)
|
||
|
|
||
|
# Batched masks no channel dim
|
||
|
else:
|
||
|
mask = mask.unsqueeze(1)
|
||
|
|
||
|
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
||
|
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
||
|
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
||
|
|
||
|
# Check image is in [-1, 1]
|
||
|
if image.min() < -1 or image.max() > 1:
|
||
|
raise ValueError("Image should be in [-1, 1] range")
|
||
|
|
||
|
# Check mask is in [0, 1]
|
||
|
if mask.min() < 0 or mask.max() > 1:
|
||
|
raise ValueError("Mask should be in [0, 1] range")
|
||
|
|
||
|
# Binarize mask
|
||
|
mask[mask < 0.5] = 0
|
||
|
mask[mask >= 0.5] = 1
|
||
|
|
||
|
# Image as float32
|
||
|
image = image.to(dtype=torch.float32)
|
||
|
elif isinstance(mask, torch.Tensor):
|
||
|
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
||
|
else:
|
||
|
# preprocess image
|
||
|
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
||
|
image = [image]
|
||
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
||
|
# resize all images w.r.t passed height an width
|
||
|
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
||
|
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
||
|
image = np.concatenate(image, axis=0)
|
||
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
||
|
image = np.concatenate([i[None, :] for i in image], axis=0)
|
||
|
|
||
|
image = image.transpose(0, 3, 1, 2)
|
||
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||
|
|
||
|
# preprocess mask
|
||
|
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
||
|
mask = [mask]
|
||
|
|
||
|
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
||
|
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
||
|
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
||
|
mask = mask.astype(np.float32) / 255.0
|
||
|
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
||
|
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
||
|
|
||
|
mask[mask < 0.5] = 0
|
||
|
mask[mask >= 0.5] = 1
|
||
|
mask = torch.from_numpy(mask)
|
||
|
|
||
|
masked_image = image * (mask < 0.5)
|
||
|
|
||
|
# n.b. ensure backwards compatibility as old function does not return image
|
||
|
if return_image:
|
||
|
return mask, masked_image, image
|
||
|
|
||
|
return mask, masked_image
|
||
|
|
||
|
|
||
|
class StableDiffusionControlNetInpaintPipeline(
|
||
|
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
||
|
):
|
||
|
r"""
|
||
|
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
||
|
|
||
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||
|
|
||
|
In addition the pipeline inherits the following loading methods:
|
||
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
This pipeline can be used both with checkpoints that have been specifically fine-tuned for inpainting, such as
|
||
|
[runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)
|
||
|
as well as default text-to-image stable diffusion checkpoints, such as
|
||
|
[runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
||
|
Default text-to-image stable diffusion checkpoints might be preferable for controlnets that have been fine-tuned on
|
||
|
those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Args:
|
||
|
vae ([`AutoencoderKL`]):
|
||
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||
|
text_encoder ([`CLIPTextModel`]):
|
||
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||
|
tokenizer (`CLIPTokenizer`):
|
||
|
Tokenizer of class
|
||
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
||
|
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
||
|
as a list, the outputs from each ControlNet are added together to create one combined additional
|
||
|
conditioning.
|
||
|
scheduler ([`SchedulerMixin`]):
|
||
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||
|
feature_extractor ([`CLIPImageProcessor`]):
|
||
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||
|
"""
|
||
|
_optional_components = ["safety_checker", "feature_extractor"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vae: AutoencoderKL,
|
||
|
text_encoder: CLIPTextModel,
|
||
|
tokenizer: CLIPTokenizer,
|
||
|
unet: UNet2DConditionModel,
|
||
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
||
|
scheduler: KarrasDiffusionSchedulers,
|
||
|
safety_checker: StableDiffusionSafetyChecker,
|
||
|
feature_extractor: CLIPImageProcessor,
|
||
|
requires_safety_checker: bool = True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
if safety_checker is None and requires_safety_checker:
|
||
|
logger.warning(
|
||
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
||
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
||
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
||
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
||
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
||
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
||
|
)
|
||
|
|
||
|
if safety_checker is not None and feature_extractor is None:
|
||
|
raise ValueError(
|
||
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
||
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
||
|
)
|
||
|
|
||
|
if isinstance(controlnet, (list, tuple)):
|
||
|
controlnet = MultiControlNetModel(controlnet)
|
||
|
|
||
|
self.register_modules(
|
||
|
vae=vae,
|
||
|
text_encoder=text_encoder,
|
||
|
tokenizer=tokenizer,
|
||
|
unet=unet,
|
||
|
controlnet=controlnet,
|
||
|
scheduler=scheduler,
|
||
|
safety_checker=safety_checker,
|
||
|
feature_extractor=feature_extractor,
|
||
|
)
|
||
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||
|
self.control_image_processor = VaeImageProcessor(
|
||
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
||
|
)
|
||
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
||
|
def enable_vae_slicing(self):
|
||
|
r"""
|
||
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||
|
"""
|
||
|
self.vae.enable_slicing()
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
||
|
def disable_vae_slicing(self):
|
||
|
r"""
|
||
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||
|
computing decoding in one step.
|
||
|
"""
|
||
|
self.vae.disable_slicing()
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
||
|
def enable_vae_tiling(self):
|
||
|
r"""
|
||
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||
|
processing larger images.
|
||
|
"""
|
||
|
self.vae.enable_tiling()
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
||
|
def disable_vae_tiling(self):
|
||
|
r"""
|
||
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||
|
computing decoding in one step.
|
||
|
"""
|
||
|
self.vae.disable_tiling()
|
||
|
|
||
|
def enable_model_cpu_offload(self, gpu_id=0):
|
||
|
r"""
|
||
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
||
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
||
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
||
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
||
|
"""
|
||
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
||
|
from accelerate import cpu_offload_with_hook
|
||
|
else:
|
||
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
||
|
|
||
|
device = torch.device(f"cuda:{gpu_id}")
|
||
|
|
||
|
hook = None
|
||
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
||
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
||
|
|
||
|
if self.safety_checker is not None:
|
||
|
# the safety checker can offload the vae again
|
||
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
||
|
|
||
|
# control net hook has be manually offloaded as it alternates with unet
|
||
|
cpu_offload_with_hook(self.controlnet, device)
|
||
|
|
||
|
# We'll offload the last model manually.
|
||
|
self.final_offload_hook = hook
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
||
|
def _encode_prompt(
|
||
|
self,
|
||
|
promptA,
|
||
|
promptB,
|
||
|
t,
|
||
|
device,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
negative_promptA=None,
|
||
|
negative_promptB=None,
|
||
|
t_nag = None,
|
||
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
lora_scale: Optional[float] = None,
|
||
|
):
|
||
|
r"""
|
||
|
Encodes the prompt into text encoder hidden states.
|
||
|
|
||
|
Args:
|
||
|
prompt (`str` or `List[str]`, *optional*):
|
||
|
prompt to be encoded
|
||
|
device: (`torch.device`):
|
||
|
torch device
|
||
|
num_images_per_prompt (`int`):
|
||
|
number of images that should be generated per prompt
|
||
|
do_classifier_free_guidance (`bool`):
|
||
|
whether to use classifier free guidance or not
|
||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
||
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||
|
less than `1`).
|
||
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||
|
provided, text embeddings will be generated from `prompt` input argument.
|
||
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||
|
argument.
|
||
|
lora_scale (`float`, *optional*):
|
||
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||
|
"""
|
||
|
# set lora scale so that monkey patched LoRA
|
||
|
# function of text encoder can correctly access it
|
||
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
||
|
self._lora_scale = lora_scale
|
||
|
|
||
|
prompt = promptA
|
||
|
negative_prompt = negative_promptA
|
||
|
|
||
|
if promptA is not None and isinstance(promptA, str):
|
||
|
batch_size = 1
|
||
|
elif promptA is not None and isinstance(promptA, list):
|
||
|
batch_size = len(promptA)
|
||
|
else:
|
||
|
batch_size = prompt_embeds.shape[0]
|
||
|
|
||
|
if prompt_embeds is None:
|
||
|
# textual inversion: procecss multi-vector tokens if necessary
|
||
|
if isinstance(self, TextualInversionLoaderMixin):
|
||
|
promptA = self.maybe_convert_prompt(promptA, self.tokenizer)
|
||
|
|
||
|
text_inputsA = self.tokenizer(
|
||
|
promptA,
|
||
|
padding="max_length",
|
||
|
max_length=self.tokenizer.model_max_length,
|
||
|
truncation=True,
|
||
|
return_tensors="pt",
|
||
|
)
|
||
|
text_inputsB = self.tokenizer(
|
||
|
promptB,
|
||
|
padding="max_length",
|
||
|
max_length=self.tokenizer.model_max_length,
|
||
|
truncation=True,
|
||
|
return_tensors="pt",
|
||
|
)
|
||
|
text_input_idsA = text_inputsA.input_ids
|
||
|
text_input_idsB = text_inputsB.input_ids
|
||
|
untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids
|
||
|
|
||
|
if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal(
|
||
|
text_input_idsA, untruncated_ids
|
||
|
):
|
||
|
removed_text = self.tokenizer.batch_decode(
|
||
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
||
|
)
|
||
|
logger.warning(
|
||
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||
|
)
|
||
|
|
||
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||
|
attention_mask = text_inputsA.attention_mask.to(device)
|
||
|
else:
|
||
|
attention_mask = None
|
||
|
|
||
|
# print("text_input_idsA: ",text_input_idsA)
|
||
|
# print("text_input_idsB: ",text_input_idsB)
|
||
|
# print('t: ',t)
|
||
|
|
||
|
prompt_embedsA = self.text_encoder(
|
||
|
text_input_idsA.to(device),
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
prompt_embedsA = prompt_embedsA[0]
|
||
|
|
||
|
prompt_embedsB = self.text_encoder(
|
||
|
text_input_idsB.to(device),
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
prompt_embedsB = prompt_embedsB[0]
|
||
|
prompt_embeds = prompt_embedsA*(t)+(1-t)*prompt_embedsB
|
||
|
# print("prompt_embeds: ",prompt_embeds)
|
||
|
|
||
|
if self.text_encoder is not None:
|
||
|
prompt_embeds_dtype = self.text_encoder.dtype
|
||
|
elif self.unet is not None:
|
||
|
prompt_embeds_dtype = self.unet.dtype
|
||
|
else:
|
||
|
prompt_embeds_dtype = prompt_embeds.dtype
|
||
|
|
||
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||
|
|
||
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
||
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||
|
|
||
|
# get unconditional embeddings for classifier free guidance
|
||
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||
|
uncond_tokensA: List[str]
|
||
|
uncond_tokensB: List[str]
|
||
|
if negative_prompt is None:
|
||
|
uncond_tokensA = [""] * batch_size
|
||
|
uncond_tokensB = [""] * batch_size
|
||
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
||
|
raise TypeError(
|
||
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||
|
f" {type(prompt)}."
|
||
|
)
|
||
|
elif isinstance(negative_prompt, str):
|
||
|
uncond_tokensA = [negative_promptA]
|
||
|
uncond_tokensB = [negative_promptB]
|
||
|
elif batch_size != len(negative_prompt):
|
||
|
raise ValueError(
|
||
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||
|
" the batch size of `prompt`."
|
||
|
)
|
||
|
else:
|
||
|
uncond_tokensA = negative_promptA
|
||
|
uncond_tokensB = negative_promptB
|
||
|
|
||
|
# textual inversion: procecss multi-vector tokens if necessary
|
||
|
if isinstance(self, TextualInversionLoaderMixin):
|
||
|
uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer)
|
||
|
uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer)
|
||
|
|
||
|
max_length = prompt_embeds.shape[1]
|
||
|
uncond_inputA = self.tokenizer(
|
||
|
uncond_tokensA,
|
||
|
padding="max_length",
|
||
|
max_length=max_length,
|
||
|
truncation=True,
|
||
|
return_tensors="pt",
|
||
|
)
|
||
|
uncond_inputB = self.tokenizer(
|
||
|
uncond_tokensB,
|
||
|
padding="max_length",
|
||
|
max_length=max_length,
|
||
|
truncation=True,
|
||
|
return_tensors="pt",
|
||
|
)
|
||
|
|
||
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||
|
attention_mask = uncond_inputA.attention_mask.to(device)
|
||
|
else:
|
||
|
attention_mask = None
|
||
|
|
||
|
negative_prompt_embedsA = self.text_encoder(
|
||
|
uncond_inputA.input_ids.to(device),
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
negative_prompt_embedsB = self.text_encoder(
|
||
|
uncond_inputB.input_ids.to(device),
|
||
|
attention_mask=attention_mask,
|
||
|
)
|
||
|
negative_prompt_embeds = negative_prompt_embedsA[0]*(t_nag)+(1-t_nag)*negative_prompt_embedsB[0]
|
||
|
|
||
|
# negative_prompt_embeds = negative_prompt_embeds[0]
|
||
|
|
||
|
if do_classifier_free_guidance:
|
||
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||
|
seq_len = negative_prompt_embeds.shape[1]
|
||
|
|
||
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||
|
|
||
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||
|
|
||
|
# For classifier free guidance, we need to do two forward passes.
|
||
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
||
|
# to avoid doing two forward passes
|
||
|
# print("prompt_embeds: ",prompt_embeds)
|
||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||
|
|
||
|
return prompt_embeds
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
||
|
def run_safety_checker(self, image, device, dtype):
|
||
|
if self.safety_checker is None:
|
||
|
has_nsfw_concept = None
|
||
|
else:
|
||
|
if torch.is_tensor(image):
|
||
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
||
|
else:
|
||
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
||
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
||
|
image, has_nsfw_concept = self.safety_checker(
|
||
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
||
|
)
|
||
|
return image, has_nsfw_concept
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
||
|
def decode_latents(self, latents):
|
||
|
warnings.warn(
|
||
|
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
||
|
" use VaeImageProcessor instead",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
latents = 1 / self.vae.config.scaling_factor * latents
|
||
|
image = self.vae.decode(latents, return_dict=False)[0]
|
||
|
image = (image / 2 + 0.5).clamp(0, 1)
|
||
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||
|
return image
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||
|
def prepare_extra_step_kwargs(self, generator, eta):
|
||
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||
|
# and should be between [0, 1]
|
||
|
|
||
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||
|
extra_step_kwargs = {}
|
||
|
if accepts_eta:
|
||
|
extra_step_kwargs["eta"] = eta
|
||
|
|
||
|
# check if the scheduler accepts generator
|
||
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||
|
if accepts_generator:
|
||
|
extra_step_kwargs["generator"] = generator
|
||
|
return extra_step_kwargs
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
||
|
def get_timesteps(self, num_inference_steps, strength, device):
|
||
|
# get the original timestep using init_timestep
|
||
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
||
|
|
||
|
t_start = max(num_inference_steps - init_timestep, 0)
|
||
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
||
|
|
||
|
return timesteps, num_inference_steps - t_start
|
||
|
|
||
|
def check_inputs(
|
||
|
self,
|
||
|
prompt,
|
||
|
image,
|
||
|
height,
|
||
|
width,
|
||
|
callback_steps,
|
||
|
negative_prompt=None,
|
||
|
prompt_embeds=None,
|
||
|
negative_prompt_embeds=None,
|
||
|
controlnet_conditioning_scale=1.0,
|
||
|
control_guidance_start=0.0,
|
||
|
control_guidance_end=1.0,
|
||
|
):
|
||
|
if height % 8 != 0 or width % 8 != 0:
|
||
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||
|
|
||
|
if (callback_steps is None) or (
|
||
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||
|
):
|
||
|
raise ValueError(
|
||
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||
|
f" {type(callback_steps)}."
|
||
|
)
|
||
|
|
||
|
if prompt is not None and prompt_embeds is not None:
|
||
|
raise ValueError(
|
||
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||
|
" only forward one of the two."
|
||
|
)
|
||
|
elif prompt is None and prompt_embeds is None:
|
||
|
raise ValueError(
|
||
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||
|
)
|
||
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||
|
|
||
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||
|
raise ValueError(
|
||
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||
|
)
|
||
|
|
||
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||
|
raise ValueError(
|
||
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||
|
f" {negative_prompt_embeds.shape}."
|
||
|
)
|
||
|
|
||
|
# `prompt` needs more sophisticated handling when there are multiple
|
||
|
# conditionings.
|
||
|
if isinstance(self.controlnet, MultiControlNetModel):
|
||
|
if isinstance(prompt, list):
|
||
|
logger.warning(
|
||
|
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
||
|
" prompts. The conditionings will be fixed across the prompts."
|
||
|
)
|
||
|
|
||
|
# Check `image`
|
||
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
||
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
isinstance(self.controlnet, ControlNetModel)
|
||
|
or is_compiled
|
||
|
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
||
|
):
|
||
|
self.check_image(image, prompt, prompt_embeds)
|
||
|
elif (
|
||
|
isinstance(self.controlnet, MultiControlNetModel)
|
||
|
or is_compiled
|
||
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
||
|
):
|
||
|
if not isinstance(image, list):
|
||
|
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
||
|
|
||
|
# When `image` is a nested list:
|
||
|
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
||
|
elif any(isinstance(i, list) for i in image):
|
||
|
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
||
|
elif len(image) != len(self.controlnet.nets):
|
||
|
raise ValueError(
|
||
|
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
||
|
)
|
||
|
|
||
|
for image_ in image:
|
||
|
self.check_image(image_, prompt, prompt_embeds)
|
||
|
else:
|
||
|
assert False
|
||
|
|
||
|
# Check `controlnet_conditioning_scale`
|
||
|
if (
|
||
|
isinstance(self.controlnet, ControlNetModel)
|
||
|
or is_compiled
|
||
|
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
||
|
):
|
||
|
if not isinstance(controlnet_conditioning_scale, float):
|
||
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
||
|
elif (
|
||
|
isinstance(self.controlnet, MultiControlNetModel)
|
||
|
or is_compiled
|
||
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
||
|
):
|
||
|
if isinstance(controlnet_conditioning_scale, list):
|
||
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
||
|
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
||
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
||
|
self.controlnet.nets
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
||
|
" the same length as the number of controlnets"
|
||
|
)
|
||
|
else:
|
||
|
assert False
|
||
|
|
||
|
if len(control_guidance_start) != len(control_guidance_end):
|
||
|
raise ValueError(
|
||
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
||
|
)
|
||
|
|
||
|
if isinstance(self.controlnet, MultiControlNetModel):
|
||
|
if len(control_guidance_start) != len(self.controlnet.nets):
|
||
|
raise ValueError(
|
||
|
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
||
|
)
|
||
|
|
||
|
for start, end in zip(control_guidance_start, control_guidance_end):
|
||
|
if start >= end:
|
||
|
raise ValueError(
|
||
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
||
|
)
|
||
|
if start < 0.0:
|
||
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
||
|
if end > 1.0:
|
||
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
||
|
|
||
|
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
||
|
def check_image(self, image, prompt, prompt_embeds):
|
||
|
image_is_pil = isinstance(image, PIL.Image.Image)
|
||
|
image_is_tensor = isinstance(image, torch.Tensor)
|
||
|
image_is_np = isinstance(image, np.ndarray)
|
||
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
||
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
||
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
||
|
|
||
|
if (
|
||
|
not image_is_pil
|
||
|
and not image_is_tensor
|
||
|
and not image_is_np
|
||
|
and not image_is_pil_list
|
||
|
and not image_is_tensor_list
|
||
|
and not image_is_np_list
|
||
|
):
|
||
|
raise TypeError(
|
||
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
||
|
)
|
||
|
|
||
|
if image_is_pil:
|
||
|
image_batch_size = 1
|
||
|
else:
|
||
|
image_batch_size = len(image)
|
||
|
|
||
|
if prompt is not None and isinstance(prompt, str):
|
||
|
prompt_batch_size = 1
|
||
|
elif prompt is not None and isinstance(prompt, list):
|
||
|
prompt_batch_size = len(prompt)
|
||
|
elif prompt_embeds is not None:
|
||
|
prompt_batch_size = prompt_embeds.shape[0]
|
||
|
|
||
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
||
|
raise ValueError(
|
||
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
||
|
)
|
||
|
|
||
|
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
||
|
def prepare_control_image(
|
||
|
self,
|
||
|
image,
|
||
|
width,
|
||
|
height,
|
||
|
batch_size,
|
||
|
num_images_per_prompt,
|
||
|
device,
|
||
|
dtype,
|
||
|
do_classifier_free_guidance=False,
|
||
|
guess_mode=False,
|
||
|
):
|
||
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
||
|
image_batch_size = image.shape[0]
|
||
|
|
||
|
if image_batch_size == 1:
|
||
|
repeat_by = batch_size
|
||
|
else:
|
||
|
# image batch size is the same as prompt batch size
|
||
|
repeat_by = num_images_per_prompt
|
||
|
|
||
|
image = image.repeat_interleave(repeat_by, dim=0)
|
||
|
|
||
|
image = image.to(device=device, dtype=dtype)
|
||
|
|
||
|
if do_classifier_free_guidance and not guess_mode:
|
||
|
image = torch.cat([image] * 2)
|
||
|
|
||
|
return image
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
|
||
|
def prepare_latents(
|
||
|
self,
|
||
|
batch_size,
|
||
|
num_channels_latents,
|
||
|
height,
|
||
|
width,
|
||
|
dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
latents=None,
|
||
|
image=None,
|
||
|
timestep=None,
|
||
|
is_strength_max=True,
|
||
|
return_noise=False,
|
||
|
return_image_latents=False,
|
||
|
):
|
||
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
||
|
if isinstance(generator, list) and len(generator) != batch_size:
|
||
|
raise ValueError(
|
||
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||
|
)
|
||
|
|
||
|
if (image is None or timestep is None) and not is_strength_max:
|
||
|
raise ValueError(
|
||
|
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
||
|
"However, either the image or the noise timestep has not been provided."
|
||
|
)
|
||
|
|
||
|
if return_image_latents or (latents is None and not is_strength_max):
|
||
|
image = image.to(device=device, dtype=dtype)
|
||
|
image_latents = self._encode_vae_image(image=image, generator=generator)
|
||
|
|
||
|
if latents is None:
|
||
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||
|
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
||
|
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
||
|
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
||
|
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
||
|
else:
|
||
|
noise = latents.to(device)
|
||
|
latents = noise * self.scheduler.init_noise_sigma
|
||
|
|
||
|
outputs = (latents,)
|
||
|
|
||
|
if return_noise:
|
||
|
outputs += (noise,)
|
||
|
|
||
|
if return_image_latents:
|
||
|
outputs += (image_latents,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def _default_height_width(self, height, width, image):
|
||
|
# NOTE: It is possible that a list of images have different
|
||
|
# dimensions for each image, so just checking the first image
|
||
|
# is not _exactly_ correct, but it is simple.
|
||
|
while isinstance(image, list):
|
||
|
image = image[0]
|
||
|
|
||
|
if height is None:
|
||
|
if isinstance(image, PIL.Image.Image):
|
||
|
height = image.height
|
||
|
elif isinstance(image, torch.Tensor):
|
||
|
height = image.shape[2]
|
||
|
|
||
|
height = (height // 8) * 8 # round down to nearest multiple of 8
|
||
|
|
||
|
if width is None:
|
||
|
if isinstance(image, PIL.Image.Image):
|
||
|
width = image.width
|
||
|
elif isinstance(image, torch.Tensor):
|
||
|
width = image.shape[3]
|
||
|
|
||
|
width = (width // 8) * 8 # round down to nearest multiple of 8
|
||
|
|
||
|
return height, width
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
|
||
|
def prepare_mask_latents(
|
||
|
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
||
|
):
|
||
|
# resize the mask to latents shape as we concatenate the mask to the latents
|
||
|
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
||
|
# and half precision
|
||
|
mask = torch.nn.functional.interpolate(
|
||
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
||
|
)
|
||
|
mask = mask.to(device=device, dtype=dtype)
|
||
|
|
||
|
masked_image = masked_image.to(device=device, dtype=dtype)
|
||
|
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
||
|
|
||
|
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
||
|
if mask.shape[0] < batch_size:
|
||
|
if not batch_size % mask.shape[0] == 0:
|
||
|
raise ValueError(
|
||
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
||
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
||
|
" of masks that you pass is divisible by the total requested batch size."
|
||
|
)
|
||
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
||
|
if masked_image_latents.shape[0] < batch_size:
|
||
|
if not batch_size % masked_image_latents.shape[0] == 0:
|
||
|
raise ValueError(
|
||
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
||
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
||
|
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
||
|
)
|
||
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
||
|
|
||
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
||
|
masked_image_latents = (
|
||
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
||
|
)
|
||
|
|
||
|
# aligning device to prevent device errors when concating it with the latent model input
|
||
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
||
|
return mask, masked_image_latents
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
|
||
|
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
||
|
if isinstance(generator, list):
|
||
|
image_latents = [
|
||
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
||
|
for i in range(image.shape[0])
|
||
|
]
|
||
|
image_latents = torch.cat(image_latents, dim=0)
|
||
|
else:
|
||
|
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
|
||
|
|
||
|
image_latents = self.vae.config.scaling_factor * image_latents
|
||
|
|
||
|
return image_latents
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def predict_woControl(
|
||
|
self,
|
||
|
promptA: Union[str, List[str]] = None,
|
||
|
promptB: Union[str, List[str]] = None,
|
||
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
||
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
||
|
height: Optional[int] = None,
|
||
|
width: Optional[int] = None,
|
||
|
strength: float = 1.0,
|
||
|
tradoff: float = 1.0,
|
||
|
tradoff_nag: float = 1.0,
|
||
|
num_inference_steps: int = 50,
|
||
|
guidance_scale: float = 7.5,
|
||
|
negative_promptA: Optional[Union[str, List[str]]] = None,
|
||
|
negative_promptB: Optional[Union[str, List[str]]] = None,
|
||
|
num_images_per_prompt: Optional[int] = 1,
|
||
|
eta: float = 0.0,
|
||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||
|
latents: Optional[torch.FloatTensor] = None,
|
||
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_type: Optional[str] = "pil",
|
||
|
return_dict: bool = True,
|
||
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||
|
callback_steps: int = 1,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
task_class: Union[torch.Tensor, float, int] = None,
|
||
|
):
|
||
|
r"""
|
||
|
The call function to the pipeline for generation.
|
||
|
|
||
|
Args:
|
||
|
prompt (`str` or `List[str]`, *optional*):
|
||
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
||
|
image (`PIL.Image.Image`):
|
||
|
`Image` or tensor representing an image batch to be inpainted (which parts of the image to be masked
|
||
|
out with `mask_image` and repainted according to `prompt`).
|
||
|
mask_image (`PIL.Image.Image`):
|
||
|
`Image` or tensor representing an image batch to mask `image`. White pixels in the mask are repainted
|
||
|
while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel
|
||
|
(luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the
|
||
|
expected shape would be `(B, H, W, 1)`.
|
||
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
||
|
The height in pixels of the generated image.
|
||
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
||
|
The width in pixels of the generated image.
|
||
|
strength (`float`, *optional*, defaults to 1.0):
|
||
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
||
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
||
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
||
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
||
|
essentially ignores `image`.
|
||
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
||
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||
|
expense of slower inference. This parameter is modulated by `strength`.
|
||
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
||
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
||
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
||
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||
|
The number of images to generate per prompt.
|
||
|
eta (`float`, *optional*, defaults to 0.0):
|
||
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
||
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
||
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||
|
generation deterministic.
|
||
|
latents (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
||
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||
|
tensor is generated by sampling using the supplied random `generator`.
|
||
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||
|
provided, text embeddings are generated from the `prompt` input argument.
|
||
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
||
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
||
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||
|
plain tuple.
|
||
|
callback (`Callable`, *optional*):
|
||
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
||
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||
|
callback_steps (`int`, *optional*, defaults to 1):
|
||
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
||
|
every step.
|
||
|
cross_attention_kwargs (`dict`, *optional*):
|
||
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
||
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```py
|
||
|
>>> import PIL
|
||
|
>>> import requests
|
||
|
>>> import torch
|
||
|
>>> from io import BytesIO
|
||
|
|
||
|
>>> from diffusers import StableDiffusionInpaintPipeline
|
||
|
|
||
|
|
||
|
>>> def download_image(url):
|
||
|
... response = requests.get(url)
|
||
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
||
|
|
||
|
|
||
|
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
||
|
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
||
|
|
||
|
>>> init_image = download_image(img_url).resize((512, 512))
|
||
|
>>> mask_image = download_image(mask_url).resize((512, 512))
|
||
|
|
||
|
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
||
|
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
||
|
... )
|
||
|
>>> pipe = pipe.to("cuda")
|
||
|
|
||
|
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
||
|
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
||
|
```
|
||
|
|
||
|
Returns:
|
||
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
||
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
||
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
||
|
"not-safe-for-work" (nsfw) content.
|
||
|
"""
|
||
|
# 0. Default height and width to unet
|
||
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||
|
prompt = promptA
|
||
|
negative_prompt = negative_promptA
|
||
|
# 1. Check inputs
|
||
|
self.check_inputs(
|
||
|
prompt,
|
||
|
height,
|
||
|
width,
|
||
|
strength,
|
||
|
callback_steps,
|
||
|
negative_prompt,
|
||
|
prompt_embeds,
|
||
|
negative_prompt_embeds,
|
||
|
)
|
||
|
|
||
|
# 2. Define call parameters
|
||
|
if prompt is not None and isinstance(prompt, str):
|
||
|
batch_size = 1
|
||
|
elif prompt is not None and isinstance(prompt, list):
|
||
|
batch_size = len(prompt)
|
||
|
else:
|
||
|
batch_size = prompt_embeds.shape[0]
|
||
|
|
||
|
device = self._execution_device
|
||
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||
|
# corresponds to doing no classifier free guidance.
|
||
|
do_classifier_free_guidance = guidance_scale > 1.0
|
||
|
|
||
|
# 3. Encode input prompt
|
||
|
text_encoder_lora_scale = (
|
||
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||
|
)
|
||
|
prompt_embeds = self._encode_prompt(
|
||
|
promptA,
|
||
|
promptB,
|
||
|
tradoff,
|
||
|
device,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
negative_promptA,
|
||
|
negative_promptB,
|
||
|
tradoff_nag,
|
||
|
prompt_embeds=prompt_embeds,
|
||
|
negative_prompt_embeds=negative_prompt_embeds,
|
||
|
lora_scale=text_encoder_lora_scale,
|
||
|
)
|
||
|
|
||
|
# 4. set timesteps
|
||
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||
|
timesteps, num_inference_steps = self.get_timesteps(
|
||
|
num_inference_steps=num_inference_steps, strength=strength, device=device
|
||
|
)
|
||
|
# check that number of inference steps is not < 1 - as this doesn't make sense
|
||
|
if num_inference_steps < 1:
|
||
|
raise ValueError(
|
||
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
||
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
||
|
)
|
||
|
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
||
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||
|
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
||
|
is_strength_max = strength == 1.0
|
||
|
|
||
|
# 5. Preprocess mask and image
|
||
|
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
||
|
image, mask_image, height, width, return_image=True
|
||
|
)
|
||
|
mask_condition = mask.clone()
|
||
|
|
||
|
# 6. Prepare latent variables
|
||
|
num_channels_latents = self.vae.config.latent_channels
|
||
|
num_channels_unet = self.unet.config.in_channels
|
||
|
return_image_latents = num_channels_unet == 4
|
||
|
|
||
|
latents_outputs = self.prepare_latents(
|
||
|
batch_size * num_images_per_prompt,
|
||
|
num_channels_latents,
|
||
|
height,
|
||
|
width,
|
||
|
prompt_embeds.dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
latents,
|
||
|
image=init_image,
|
||
|
timestep=latent_timestep,
|
||
|
is_strength_max=is_strength_max,
|
||
|
return_noise=True,
|
||
|
return_image_latents=return_image_latents,
|
||
|
)
|
||
|
|
||
|
if return_image_latents:
|
||
|
latents, noise, image_latents = latents_outputs
|
||
|
else:
|
||
|
latents, noise = latents_outputs
|
||
|
|
||
|
# 7. Prepare mask latent variables
|
||
|
mask, masked_image_latents = self.prepare_mask_latents(
|
||
|
mask,
|
||
|
masked_image,
|
||
|
batch_size * num_images_per_prompt,
|
||
|
height,
|
||
|
width,
|
||
|
prompt_embeds.dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
do_classifier_free_guidance,
|
||
|
)
|
||
|
|
||
|
# 8. Check that sizes of mask, masked image and latents match
|
||
|
if num_channels_unet == 9:
|
||
|
# default case for runwayml/stable-diffusion-inpainting
|
||
|
num_channels_mask = mask.shape[1]
|
||
|
num_channels_masked_image = masked_image_latents.shape[1]
|
||
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
||
|
raise ValueError(
|
||
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
||
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
||
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
||
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
||
|
" `pipeline.unet` or your `mask_image` or `image` input."
|
||
|
)
|
||
|
elif num_channels_unet != 4:
|
||
|
raise ValueError(
|
||
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
||
|
)
|
||
|
|
||
|
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||
|
|
||
|
# 10. Denoising loop
|
||
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||
|
for i, t in enumerate(timesteps):
|
||
|
# expand the latents if we are doing classifier free guidance
|
||
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||
|
|
||
|
# concat latents, mask, masked_image_latents in the channel dimension
|
||
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||
|
|
||
|
if num_channels_unet == 9:
|
||
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
||
|
|
||
|
# predict the noise residual
|
||
|
if task_class is not None:
|
||
|
noise_pred = self.unet(
|
||
|
sample = latent_model_input,
|
||
|
timestep = t,
|
||
|
encoder_hidden_states=prompt_embeds,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
return_dict=False,
|
||
|
task_class = task_class,
|
||
|
)[0]
|
||
|
else:
|
||
|
noise_pred = self.unet(
|
||
|
latent_model_input,
|
||
|
t,
|
||
|
encoder_hidden_states=prompt_embeds,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
|
||
|
# perform guidance
|
||
|
if do_classifier_free_guidance:
|
||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||
|
|
||
|
# compute the previous noisy sample x_t -> x_t-1
|
||
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||
|
|
||
|
if num_channels_unet == 4:
|
||
|
init_latents_proper = image_latents[:1]
|
||
|
init_mask = mask[:1]
|
||
|
|
||
|
if i < len(timesteps) - 1:
|
||
|
noise_timestep = timesteps[i + 1]
|
||
|
init_latents_proper = self.scheduler.add_noise(
|
||
|
init_latents_proper, noise, torch.tensor([noise_timestep])
|
||
|
)
|
||
|
|
||
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
||
|
|
||
|
# call the callback, if provided
|
||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||
|
progress_bar.update()
|
||
|
if callback is not None and i % callback_steps == 0:
|
||
|
callback(i, t, latents)
|
||
|
|
||
|
if not output_type == "latent":
|
||
|
condition_kwargs = {}
|
||
|
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
||
|
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
||
|
init_image_condition = init_image.clone()
|
||
|
init_image = self._encode_vae_image(init_image, generator=generator)
|
||
|
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
|
||
|
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
|
||
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0]
|
||
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
||
|
else:
|
||
|
image = latents
|
||
|
has_nsfw_concept = None
|
||
|
|
||
|
if has_nsfw_concept is None:
|
||
|
do_denormalize = [True] * image.shape[0]
|
||
|
else:
|
||
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||
|
|
||
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
||
|
|
||
|
# Offload last model to CPU
|
||
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
||
|
self.final_offload_hook.offload()
|
||
|
|
||
|
if not return_dict:
|
||
|
return (image, has_nsfw_concept)
|
||
|
|
||
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||
|
def __call__(
|
||
|
self,
|
||
|
promptA: Union[str, List[str]] = None,
|
||
|
promptB: Union[str, List[str]] = None,
|
||
|
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
||
|
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
||
|
control_image: Union[
|
||
|
torch.FloatTensor,
|
||
|
PIL.Image.Image,
|
||
|
np.ndarray,
|
||
|
List[torch.FloatTensor],
|
||
|
List[PIL.Image.Image],
|
||
|
List[np.ndarray],
|
||
|
] = None,
|
||
|
height: Optional[int] = None,
|
||
|
width: Optional[int] = None,
|
||
|
strength: float = 1.0,
|
||
|
tradoff: float = 1.0,
|
||
|
tradoff_nag: float = 1.0,
|
||
|
num_inference_steps: int = 50,
|
||
|
guidance_scale: float = 7.5,
|
||
|
negative_promptA: Optional[Union[str, List[str]]] = None,
|
||
|
negative_promptB: Optional[Union[str, List[str]]] = None,
|
||
|
num_images_per_prompt: Optional[int] = 1,
|
||
|
eta: float = 0.0,
|
||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||
|
latents: Optional[torch.FloatTensor] = None,
|
||
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_type: Optional[str] = "pil",
|
||
|
return_dict: bool = True,
|
||
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||
|
callback_steps: int = 1,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
|
||
|
guess_mode: bool = False,
|
||
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
||
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
||
|
):
|
||
|
r"""
|
||
|
Function invoked when calling the pipeline for generation.
|
||
|
|
||
|
Args:
|
||
|
prompt (`str` or `List[str]`, *optional*):
|
||
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||
|
instead.
|
||
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
||
|
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
||
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
||
|
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
||
|
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
||
|
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
||
|
specified in init, images must be passed as a list such that each element of the list can be correctly
|
||
|
batched for input to a single controlnet.
|
||
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||
|
The height in pixels of the generated image.
|
||
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||
|
The width in pixels of the generated image.
|
||
|
strength (`float`, *optional*, defaults to 1.):
|
||
|
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
||
|
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
||
|
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
||
|
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
||
|
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
||
|
portion of the reference `image`.
|
||
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
||
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||
|
expense of slower inference.
|
||
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||
|
usually at the expense of lower image quality.
|
||
|
negative_prompt (`str` or `List[str]`, *optional*):
|
||
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||
|
less than `1`).
|
||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||
|
The number of images to generate per prompt.
|
||
|
eta (`float`, *optional*, defaults to 0.0):
|
||
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||
|
to make generation deterministic.
|
||
|
latents (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||
|
tensor will ge generated by sampling using the supplied random `generator`.
|
||
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||
|
provided, text embeddings will be generated from `prompt` input argument.
|
||
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||
|
argument.
|
||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
||
|
The output format of the generate image. Choose between
|
||
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||
|
plain tuple.
|
||
|
callback (`Callable`, *optional*):
|
||
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
||
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||
|
callback_steps (`int`, *optional*, defaults to 1):
|
||
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||
|
called at every step.
|
||
|
cross_attention_kwargs (`dict`, *optional*):
|
||
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||
|
`self.processor` in
|
||
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
|
||
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
||
|
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
||
|
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
|
||
|
than for [`~StableDiffusionControlNetPipeline.__call__`].
|
||
|
guess_mode (`bool`, *optional*, defaults to `False`):
|
||
|
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
||
|
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
||
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
||
|
The percentage of total steps at which the controlnet starts applying.
|
||
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
||
|
The percentage of total steps at which the controlnet stops applying.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
Returns:
|
||
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||
|
(nsfw) content, according to the `safety_checker`.
|
||
|
"""
|
||
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
||
|
|
||
|
# 0. Default height and width to unet
|
||
|
height, width = self._default_height_width(height, width, image)
|
||
|
|
||
|
prompt = promptA
|
||
|
negative_prompt = negative_promptA
|
||
|
|
||
|
# align format for control guidance
|
||
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
||
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
||
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
||
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
||
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
||
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
||
|
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
|
||
|
control_guidance_end
|
||
|
]
|
||
|
|
||
|
# 1. Check inputs. Raise error if not correct
|
||
|
self.check_inputs(
|
||
|
prompt,
|
||
|
control_image,
|
||
|
height,
|
||
|
width,
|
||
|
callback_steps,
|
||
|
negative_prompt,
|
||
|
prompt_embeds,
|
||
|
negative_prompt_embeds,
|
||
|
controlnet_conditioning_scale,
|
||
|
control_guidance_start,
|
||
|
control_guidance_end,
|
||
|
)
|
||
|
|
||
|
# 2. Define call parameters
|
||
|
if prompt is not None and isinstance(prompt, str):
|
||
|
batch_size = 1
|
||
|
elif prompt is not None and isinstance(prompt, list):
|
||
|
batch_size = len(prompt)
|
||
|
else:
|
||
|
batch_size = prompt_embeds.shape[0]
|
||
|
|
||
|
device = self._execution_device
|
||
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||
|
# corresponds to doing no classifier free guidance.
|
||
|
do_classifier_free_guidance = guidance_scale > 1.0
|
||
|
|
||
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
||
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
||
|
|
||
|
global_pool_conditions = (
|
||
|
controlnet.config.global_pool_conditions
|
||
|
if isinstance(controlnet, ControlNetModel)
|
||
|
else controlnet.nets[0].config.global_pool_conditions
|
||
|
)
|
||
|
guess_mode = guess_mode or global_pool_conditions
|
||
|
|
||
|
# 3. Encode input prompt
|
||
|
text_encoder_lora_scale = (
|
||
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||
|
)
|
||
|
prompt_embeds = self._encode_prompt(
|
||
|
promptA,
|
||
|
promptB,
|
||
|
tradoff,
|
||
|
device,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
negative_promptA,
|
||
|
negative_promptB,
|
||
|
tradoff_nag,
|
||
|
prompt_embeds=prompt_embeds,
|
||
|
negative_prompt_embeds=negative_prompt_embeds,
|
||
|
lora_scale=text_encoder_lora_scale,
|
||
|
)
|
||
|
|
||
|
# 4. Prepare image
|
||
|
if isinstance(controlnet, ControlNetModel):
|
||
|
control_image = self.prepare_control_image(
|
||
|
image=control_image,
|
||
|
width=width,
|
||
|
height=height,
|
||
|
batch_size=batch_size * num_images_per_prompt,
|
||
|
num_images_per_prompt=num_images_per_prompt,
|
||
|
device=device,
|
||
|
dtype=controlnet.dtype,
|
||
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
||
|
guess_mode=guess_mode,
|
||
|
)
|
||
|
elif isinstance(controlnet, MultiControlNetModel):
|
||
|
control_images = []
|
||
|
|
||
|
for control_image_ in control_image:
|
||
|
control_image_ = self.prepare_control_image(
|
||
|
image=control_image_,
|
||
|
width=width,
|
||
|
height=height,
|
||
|
batch_size=batch_size * num_images_per_prompt,
|
||
|
num_images_per_prompt=num_images_per_prompt,
|
||
|
device=device,
|
||
|
dtype=controlnet.dtype,
|
||
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
||
|
guess_mode=guess_mode,
|
||
|
)
|
||
|
|
||
|
control_images.append(control_image_)
|
||
|
|
||
|
control_image = control_images
|
||
|
else:
|
||
|
assert False
|
||
|
|
||
|
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
|
||
|
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
||
|
image, mask_image, height, width, return_image=True
|
||
|
)
|
||
|
|
||
|
# 5. Prepare timesteps
|
||
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||
|
timesteps, num_inference_steps = self.get_timesteps(
|
||
|
num_inference_steps=num_inference_steps, strength=strength, device=device
|
||
|
)
|
||
|
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
||
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||
|
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
||
|
is_strength_max = strength == 1.0
|
||
|
|
||
|
# 6. Prepare latent variables
|
||
|
num_channels_latents = self.vae.config.latent_channels
|
||
|
num_channels_unet = self.unet.config.in_channels
|
||
|
return_image_latents = num_channels_unet == 4
|
||
|
latents_outputs = self.prepare_latents(
|
||
|
batch_size * num_images_per_prompt,
|
||
|
num_channels_latents,
|
||
|
height,
|
||
|
width,
|
||
|
prompt_embeds.dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
latents,
|
||
|
image=init_image,
|
||
|
timestep=latent_timestep,
|
||
|
is_strength_max=is_strength_max,
|
||
|
return_noise=True,
|
||
|
return_image_latents=return_image_latents,
|
||
|
)
|
||
|
|
||
|
if return_image_latents:
|
||
|
latents, noise, image_latents = latents_outputs
|
||
|
else:
|
||
|
latents, noise = latents_outputs
|
||
|
|
||
|
# 7. Prepare mask latent variables
|
||
|
mask, masked_image_latents = self.prepare_mask_latents(
|
||
|
mask,
|
||
|
masked_image,
|
||
|
batch_size * num_images_per_prompt,
|
||
|
height,
|
||
|
width,
|
||
|
prompt_embeds.dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
do_classifier_free_guidance,
|
||
|
)
|
||
|
|
||
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||
|
|
||
|
# 7.1 Create tensor stating which controlnets to keep
|
||
|
controlnet_keep = []
|
||
|
for i in range(len(timesteps)):
|
||
|
keeps = [
|
||
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
||
|
for s, e in zip(control_guidance_start, control_guidance_end)
|
||
|
]
|
||
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
||
|
|
||
|
# 8. Denoising loop
|
||
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||
|
for i, t in enumerate(timesteps):
|
||
|
# expand the latents if we are doing classifier free guidance
|
||
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||
|
|
||
|
# controlnet(s) inference
|
||
|
if guess_mode and do_classifier_free_guidance:
|
||
|
# Infer ControlNet only for the conditional batch.
|
||
|
control_model_input = latents
|
||
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
||
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
||
|
else:
|
||
|
control_model_input = latent_model_input
|
||
|
controlnet_prompt_embeds = prompt_embeds
|
||
|
|
||
|
if isinstance(controlnet_keep[i], list):
|
||
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
||
|
else:
|
||
|
controlnet_cond_scale = controlnet_conditioning_scale
|
||
|
if isinstance(controlnet_cond_scale, list):
|
||
|
controlnet_cond_scale = controlnet_cond_scale[0]
|
||
|
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
||
|
|
||
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
||
|
control_model_input,
|
||
|
t,
|
||
|
encoder_hidden_states=controlnet_prompt_embeds,
|
||
|
controlnet_cond=control_image,
|
||
|
conditioning_scale=cond_scale,
|
||
|
guess_mode=guess_mode,
|
||
|
return_dict=False,
|
||
|
)
|
||
|
|
||
|
if guess_mode and do_classifier_free_guidance:
|
||
|
# Infered ControlNet only for the conditional batch.
|
||
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
||
|
# add 0 to the unconditional batch to keep it unchanged.
|
||
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
||
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
||
|
|
||
|
# predict the noise residual
|
||
|
if num_channels_unet == 9:
|
||
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
||
|
|
||
|
noise_pred = self.unet(
|
||
|
latent_model_input,
|
||
|
t,
|
||
|
encoder_hidden_states=prompt_embeds,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
down_block_additional_residuals=down_block_res_samples,
|
||
|
mid_block_additional_residual=mid_block_res_sample,
|
||
|
return_dict=False,
|
||
|
)[0]
|
||
|
|
||
|
# perform guidance
|
||
|
if do_classifier_free_guidance:
|
||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||
|
|
||
|
# compute the previous noisy sample x_t -> x_t-1
|
||
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||
|
|
||
|
if num_channels_unet == 4:
|
||
|
init_latents_proper = image_latents[:1]
|
||
|
init_mask = mask[:1]
|
||
|
|
||
|
if i < len(timesteps) - 1:
|
||
|
noise_timestep = timesteps[i + 1]
|
||
|
init_latents_proper = self.scheduler.add_noise(
|
||
|
init_latents_proper, noise, torch.tensor([noise_timestep])
|
||
|
)
|
||
|
|
||
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
||
|
|
||
|
# call the callback, if provided
|
||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||
|
progress_bar.update()
|
||
|
if callback is not None and i % callback_steps == 0:
|
||
|
callback(i, t, latents)
|
||
|
|
||
|
# If we do sequential model offloading, let's offload unet and controlnet
|
||
|
# manually for max memory savings
|
||
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
||
|
self.unet.to("cpu")
|
||
|
self.controlnet.to("cpu")
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
if not output_type == "latent":
|
||
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
||
|
else:
|
||
|
image = latents
|
||
|
has_nsfw_concept = None
|
||
|
|
||
|
if has_nsfw_concept is None:
|
||
|
do_denormalize = [True] * image.shape[0]
|
||
|
else:
|
||
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||
|
|
||
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
||
|
|
||
|
# Offload last model to CPU
|
||
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
||
|
self.final_offload_hook.offload()
|
||
|
|
||
|
if not return_dict:
|
||
|
return (image, has_nsfw_concept)
|
||
|
|
||
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|