2023-12-01 03:15:35 +01:00
|
|
|
import os
|
|
|
|
|
2023-11-14 07:19:56 +01:00
|
|
|
import PIL.Image
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
2023-12-01 03:15:35 +01:00
|
|
|
from diffusers import AutoencoderKL
|
2023-11-14 07:19:56 +01:00
|
|
|
from loguru import logger
|
|
|
|
|
|
|
|
from lama_cleaner.model.base import DiffusionInpaintModel
|
|
|
|
from lama_cleaner.schema import Config
|
|
|
|
|
|
|
|
|
|
|
|
class SDXL(DiffusionInpaintModel):
|
|
|
|
name = "sdxl"
|
|
|
|
pad_mod = 8
|
|
|
|
min_size = 512
|
2023-11-15 01:50:35 +01:00
|
|
|
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
2023-12-01 03:15:35 +01:00
|
|
|
model_id_or_path = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
|
2023-11-14 07:19:56 +01:00
|
|
|
|
|
|
|
def init_model(self, device: torch.device, **kwargs):
|
2023-12-01 03:15:35 +01:00
|
|
|
from diffusers.pipelines import StableDiffusionXLInpaintPipeline
|
2023-11-14 07:19:56 +01:00
|
|
|
|
|
|
|
fp16 = not kwargs.get("no_half", False)
|
|
|
|
|
|
|
|
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
|
|
|
|
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
|
|
|
|
2023-12-01 03:15:35 +01:00
|
|
|
if os.path.isfile(self.model_id_or_path):
|
|
|
|
self.model = StableDiffusionXLInpaintPipeline.from_single_file(
|
|
|
|
self.model_id_or_path, torch_dtype=torch_dtype
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
vae = AutoencoderKL.from_pretrained(
|
|
|
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
|
)
|
|
|
|
self.model = StableDiffusionXLInpaintPipeline.from_pretrained(
|
|
|
|
self.model_id_or_path,
|
|
|
|
revision="main",
|
|
|
|
torch_dtype=torch_dtype,
|
|
|
|
use_auth_token=kwargs["hf_access_token"],
|
|
|
|
vae=vae,
|
|
|
|
)
|
2023-11-14 07:19:56 +01:00
|
|
|
|
|
|
|
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
|
|
|
|
self.model.enable_attention_slicing()
|
|
|
|
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
|
|
|
|
if kwargs.get("enable_xformers", False):
|
|
|
|
self.model.enable_xformers_memory_efficient_attention()
|
|
|
|
|
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu:
|
|
|
|
logger.info("Enable sequential cpu offload")
|
|
|
|
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
|
|
|
else:
|
|
|
|
self.model = self.model.to(device)
|
|
|
|
if kwargs["sd_cpu_textencoder"]:
|
|
|
|
logger.warning("Stable Diffusion XL not support run TextEncoder on CPU")
|
|
|
|
|
|
|
|
self.callback = kwargs.pop("callback", None)
|
|
|
|
|
2023-11-16 14:12:06 +01:00
|
|
|
@staticmethod
|
|
|
|
def download():
|
|
|
|
from diffusers import AutoPipelineForInpainting
|
|
|
|
|
|
|
|
AutoPipelineForInpainting.from_pretrained(
|
|
|
|
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
|
|
|
|
)
|
|
|
|
|
2023-11-14 07:19:56 +01:00
|
|
|
def forward(self, image, mask, config: Config):
|
|
|
|
"""Input image and output image have same size
|
|
|
|
image: [H, W, C] RGB
|
|
|
|
mask: [H, W, 1] 255 means area to repaint
|
|
|
|
return: BGR IMAGE
|
|
|
|
"""
|
2023-11-15 01:50:35 +01:00
|
|
|
self.set_scheduler(config)
|
2023-11-14 07:19:56 +01:00
|
|
|
|
|
|
|
if config.sd_mask_blur != 0:
|
|
|
|
k = 2 * config.sd_mask_blur + 1
|
|
|
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
|
|
|
|
|
|
|
|
img_h, img_w = image.shape[:2]
|
|
|
|
|
|
|
|
output = self.model(
|
|
|
|
image=PIL.Image.fromarray(image),
|
|
|
|
prompt=config.prompt,
|
|
|
|
negative_prompt=config.negative_prompt,
|
|
|
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
|
|
|
|
num_inference_steps=config.sd_steps,
|
|
|
|
strength=0.999 if config.sd_strength == 1.0 else config.sd_strength,
|
|
|
|
guidance_scale=config.sd_guidance_scale,
|
|
|
|
output_type="np",
|
|
|
|
callback=self.callback,
|
|
|
|
height=img_h,
|
|
|
|
width=img_w,
|
|
|
|
generator=torch.manual_seed(config.sd_seed),
|
2023-11-15 01:50:35 +01:00
|
|
|
callback_steps=1,
|
2023-11-14 07:19:56 +01:00
|
|
|
).images[0]
|
|
|
|
|
|
|
|
output = (output * 255).round().astype("uint8")
|
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
|
|
|
return output
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def is_downloaded() -> bool:
|
|
|
|
# model will be downloaded when app start, and can't switch in frontend settings
|
|
|
|
return True
|