make brushnet work

This commit is contained in:
Qing 2024-04-12 11:07:41 +08:00
parent 35f12d5b9b
commit 0a262fa811
14 changed files with 3408 additions and 56 deletions

View File

@ -6,7 +6,6 @@ KANDINSKY22_NAME = "kandinsky-community/kandinsky-2-2-decoder-inpaint"
POWERPAINT_NAME = "Sanster/PowerPaint-V1-stable-diffusion-inpainting" POWERPAINT_NAME = "Sanster/PowerPaint-V1-stable-diffusion-inpainting"
ANYTEXT_NAME = "Sanster/AnyText" ANYTEXT_NAME = "Sanster/AnyText"
DIFFUSERS_SD_CLASS_NAME = "StableDiffusionPipeline" DIFFUSERS_SD_CLASS_NAME = "StableDiffusionPipeline"
DIFFUSERS_SD_INPAINT_CLASS_NAME = "StableDiffusionInpaintPipeline" DIFFUSERS_SD_INPAINT_CLASS_NAME = "StableDiffusionInpaintPipeline"
DIFFUSERS_SDXL_CLASS_NAME = "StableDiffusionXLPipeline" DIFFUSERS_SDXL_CLASS_NAME = "StableDiffusionXLPipeline"
@ -62,6 +61,11 @@ SD_CONTROLNET_CHOICES: List[str] = [
"lllyasviel/control_v11f1p_sd15_depth", "lllyasviel/control_v11f1p_sd15_depth",
] ]
SD_BRUSHNET_CHOICES: List[str] = [
"Sanster/brushnet_random_mask",
"Sanster/brushnet_segmentation_mask"
]
SD2_CONTROLNET_CHOICES = [ SD2_CONTROLNET_CHOICES = [
"thibaud/controlnet-sd21-canny-diffusers", "thibaud/controlnet-sd21-canny-diffusers",
"thibaud/controlnet-sd21-depth-diffusers", "thibaud/controlnet-sd21-depth-diffusers",

View File

@ -1,3 +1,4 @@
import glob
import json import json
import os import os
from functools import lru_cache from functools import lru_cache
@ -92,7 +93,7 @@ def get_sdxl_model_type(model_abs_path: str) -> ModelType:
else: else:
model_type = ModelType.DIFFUSERS_SDXL model_type = ModelType.DIFFUSERS_SDXL
except ValueError as e: except ValueError as e:
if "Trying to set a tensor of shape torch.Size([320, 4, 3, 3])" in str(e): if "but got torch.Size([320, 4, 3, 3])" in str(e):
model_type = ModelType.DIFFUSERS_SDXL model_type = ModelType.DIFFUSERS_SDXL
else: else:
raise e raise e
@ -192,7 +193,9 @@ def scan_diffusers_models() -> List[ModelInfo]:
cache_dir = Path(HF_HUB_CACHE) cache_dir = Path(HF_HUB_CACHE)
# logger.info(f"Scanning diffusers models in {cache_dir}") # logger.info(f"Scanning diffusers models in {cache_dir}")
diffusers_model_names = [] diffusers_model_names = []
for it in cache_dir.glob("**/*/model_index.json"): model_index_files = glob.glob(os.path.join(cache_dir, "**/*", "model_index.json"), recursive=True)
for it in model_index_files:
it = Path(it)
with open(it, "r", encoding="utf-8") as f: with open(it, "r", encoding="utf-8") as f:
try: try:
data = json.load(f) data = json.load(f)
@ -238,7 +241,9 @@ def _scan_converted_diffusers_models(cache_dir) -> List[ModelInfo]:
cache_dir = Path(cache_dir) cache_dir = Path(cache_dir)
available_models = [] available_models = []
diffusers_model_names = [] diffusers_model_names = []
for it in cache_dir.glob("**/*/model_index.json"): model_index_files = glob.glob(os.path.join(cache_dir, "**/*", "model_index.json"), recursive=True)
for it in model_index_files:
it = Path(it)
with open(it, "r", encoding="utf-8") as f: with open(it, "r", encoding="utf-8") as f:
try: try:
data = json.load(f) data = json.load(f)

View File

@ -0,0 +1,931 @@
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, \
TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D, get_down_block, get_up_block,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from .unet_2d_blocks import MidBlock2D
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class BrushNetOutput(BaseOutput):
"""
The output of [`BrushNetModel`].
Args:
up_block_res_samples (`tuple[torch.Tensor]`):
A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
used to condition the original UNet's upsampling activations.
down_block_res_samples (`tuple[torch.Tensor]`):
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
used to condition the original UNet's downsampling activations.
mid_down_block_re_sample (`torch.Tensor`):
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
Output can be used to condition the original UNet's middle block activation.
"""
up_block_res_samples: Tuple[torch.Tensor]
down_block_res_samples: Tuple[torch.Tensor]
mid_block_res_sample: torch.Tensor
class BrushNetModel(ModelMixin, ConfigMixin):
"""
A BrushNet model.
Args:
in_channels (`int`, defaults to 4):
The number of channels in the input sample.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, defaults to 0):
The frequency shift to apply to the time embedding.
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
The tuple of upsample blocks to use.
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, defaults to 2):
The number of layers per block.
downsample_padding (`int`, defaults to 1):
The padding to use for the downsampling convolution.
mid_block_scale_factor (`float`, defaults to 1):
The scale factor to use for the mid block.
act_fn (`str`, defaults to "silu"):
The activation function to use.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
in post-processing.
norm_eps (`float`, defaults to 1e-5):
The epsilon to use for the normalization.
cross_attention_dim (`int`, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
encoder_hid_dim (`int`, *optional*, defaults to None):
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
dimension to `cross_attention_dim`.
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
The dimension of the attention heads.
use_linear_projection (`bool`, defaults to `False`):
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
addition_embed_type (`str`, *optional*, defaults to `None`):
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
"text". "text" will use the `TextTimeEmbedding` layer.
num_class_embeds (`int`, *optional*, defaults to 0):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
class conditioning with `class_embed_type` equal to `None`.
upcast_attention (`bool`, defaults to `False`):
resnet_time_scale_shift (`str`, defaults to `"default"`):
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
`class_embed_type="projection"`.
brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
The tuple of output channel for each block in the `conditioning_embedding` layer.
global_pool_conditions (`bool`, defaults to `False`):
TODO(Patrick) - unused parameter.
addition_embed_type_num_heads (`int`, defaults to 64):
The number of heads to use for the `TextTimeEmbedding` layer.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 4,
conditioning_channels: int = 5,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str, ...] = (
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
),
mid_block_type: Optional[str] = "UNetMidBlock2D",
up_block_types: Tuple[str, ...] = (
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
encoder_hid_dim: Optional[int] = None,
encoder_hid_dim_type: Optional[str] = None,
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
addition_embed_type: Optional[str] = None,
addition_time_embed_dim: Optional[int] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
projection_class_embeddings_input_dim: Optional[int] = None,
brushnet_conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
global_pool_conditions: bool = False,
addition_embed_type_num_heads: int = 64,
):
super().__init__()
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = num_attention_heads or attention_head_dim
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
# input
conv_in_kernel = 3
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in_condition = nn.Conv2d(
in_channels + conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel,
padding=conv_in_padding
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
)
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
encoder_hid_dim_type = "text_proj"
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
raise ValueError(
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
)
if encoder_hid_dim_type == "text_proj":
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
elif encoder_hid_dim_type == "text_image_proj":
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
self.encoder_hid_proj = TextImageProjection(
text_embed_dim=encoder_hid_dim,
image_embed_dim=cross_attention_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type is not None:
raise ValueError(
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
)
else:
self.encoder_hid_proj = None
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
elif class_embed_type == "projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
)
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
# 2. it projects from an arbitrary input dimension.
#
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
else:
self.class_embedding = None
if addition_embed_type == "text":
if encoder_hid_dim is not None:
text_time_embedding_from_dim = encoder_hid_dim
else:
text_time_embedding_from_dim = cross_attention_dim
self.add_embedding = TextTimeEmbedding(
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
)
elif addition_embed_type == "text_image":
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
self.add_embedding = TextImageTimeEmbedding(
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
)
elif addition_embed_type == "text_time":
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
elif addition_embed_type is not None:
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
self.down_blocks = nn.ModuleList([])
self.brushnet_down_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
brushnet_block = zero_module(brushnet_block)
self.brushnet_down_blocks.append(brushnet_block)
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[i],
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
downsample_padding=downsample_padding,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
self.down_blocks.append(down_block)
for _ in range(layers_per_block):
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
brushnet_block = zero_module(brushnet_block)
self.brushnet_down_blocks.append(brushnet_block)
if not is_final_block:
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
brushnet_block = zero_module(brushnet_block)
self.brushnet_down_blocks.append(brushnet_block)
# mid
mid_block_channel = block_out_channels[-1]
brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
brushnet_block = zero_module(brushnet_block)
self.brushnet_mid_block = brushnet_block
self.mid_block = MidBlock2D(
in_channels=mid_block_channel,
temb_channels=time_embed_dim,
dropout=0.0,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
resnet_groups=norm_num_groups,
use_linear_projection=use_linear_projection,
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
reversed_transformer_layers_per_block = (list(reversed(transformer_layers_per_block)))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
self.up_blocks = nn.ModuleList([])
self.brushnet_up_blocks = nn.ModuleList([])
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resolution_idx=i,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=reversed_num_attention_heads[i],
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
for _ in range(layers_per_block + 1):
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
brushnet_block = zero_module(brushnet_block)
self.brushnet_up_blocks.append(brushnet_block)
if not is_final_block:
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
brushnet_block = zero_module(brushnet_block)
self.brushnet_up_blocks.append(brushnet_block)
@classmethod
def from_unet(
cls,
unet: UNet2DConditionModel,
brushnet_conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
load_weights_from_unet: bool = True,
conditioning_channels: int = 5,
):
r"""
Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
Parameters:
unet (`UNet2DConditionModel`):
The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
where applicable.
"""
transformer_layers_per_block = (
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
)
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
addition_time_embed_dim = (
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
)
brushnet = cls(
in_channels=unet.config.in_channels,
conditioning_channels=conditioning_channels,
flip_sin_to_cos=unet.config.flip_sin_to_cos,
freq_shift=unet.config.freq_shift,
down_block_types=['DownBlock2D', 'DownBlock2D', 'DownBlock2D', 'DownBlock2D'],
mid_block_type='MidBlock2D',
up_block_types=['UpBlock2D', 'UpBlock2D', 'UpBlock2D', 'UpBlock2D'],
only_cross_attention=unet.config.only_cross_attention,
block_out_channels=unet.config.block_out_channels,
layers_per_block=unet.config.layers_per_block,
downsample_padding=unet.config.downsample_padding,
mid_block_scale_factor=unet.config.mid_block_scale_factor,
act_fn=unet.config.act_fn,
norm_num_groups=unet.config.norm_num_groups,
norm_eps=unet.config.norm_eps,
cross_attention_dim=unet.config.cross_attention_dim,
transformer_layers_per_block=transformer_layers_per_block,
encoder_hid_dim=encoder_hid_dim,
encoder_hid_dim_type=encoder_hid_dim_type,
attention_head_dim=unet.config.attention_head_dim,
num_attention_heads=unet.config.num_attention_heads,
use_linear_projection=unet.config.use_linear_projection,
class_embed_type=unet.config.class_embed_type,
addition_embed_type=addition_embed_type,
addition_time_embed_dim=addition_time_embed_dim,
num_class_embeds=unet.config.num_class_embeds,
upcast_attention=unet.config.upcast_attention,
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
)
if load_weights_from_unet:
conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight)
conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight
conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight
brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight)
brushnet.conv_in_condition.bias = unet.conv_in.bias
brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
if brushnet.class_embedding:
brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
return brushnet
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
r"""
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_sliceable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_sliceable_dims(module)
num_sliceable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_sliceable_layers * [1]
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
brushnet_cond: torch.FloatTensor,
conditioning_scale: float = 1.0,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guess_mode: bool = False,
return_dict: bool = True,
) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
"""
The [`BrushNetModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor.
timestep (`Union[torch.Tensor, float, int]`):
The number of timesteps to denoise an input.
encoder_hidden_states (`torch.Tensor`):
The encoder hidden states.
brushnet_cond (`torch.FloatTensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for BrushNet outputs.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
embeddings.
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
added_cond_kwargs (`dict`):
Additional conditions for the Stable Diffusion XL UNet.
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
guess_mode (`bool`, defaults to `False`):
In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
Returns:
[`~models.brushnet.BrushNetOutput`] **or** `tuple`:
If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
returned where the first element is the sample tensor.
"""
# check channel order
channel_order = self.config.brushnet_conditioning_channel_order
if channel_order == "rgb":
# in rgb order by default
...
elif channel_order == "bgr":
brushnet_cond = torch.flip(brushnet_cond, dims=[1])
else:
raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
if self.config.addition_embed_type is not None:
if self.config.addition_embed_type == "text":
aug_emb = self.add_embedding(encoder_hidden_states)
elif self.config.addition_embed_type == "text_time":
if "text_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get("text_embeds")
if "time_ids" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
emb = emb + aug_emb if aug_emb is not None else emb
# 2. pre-process
brushnet_cond = torch.concat([sample, brushnet_cond], 1)
sample = self.conv_in_condition(brushnet_cond)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. PaintingNet down blocks
brushnet_down_block_res_samples = ()
for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
down_block_res_sample = brushnet_down_block(down_block_res_sample)
brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
# 5. mid
if self.mid_block is not None:
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample = self.mid_block(sample, emb)
# 6. BrushNet mid blocks
brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
# 7. up
up_block_res_samples = ()
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample, up_res_samples = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
return_res_samples=True
)
else:
sample, up_res_samples = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
return_res_samples=True
)
up_block_res_samples += up_res_samples
# 8. BrushNet up blocks
brushnet_up_block_res_samples = ()
for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
up_block_res_sample = brushnet_up_block(up_block_res_sample)
brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
# 6. scaling
if guess_mode and not self.config.global_pool_conditions:
scales = torch.logspace(-1, 0,
len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples),
device=sample.device) # 0.1 to 1.0
scales = scales * conditioning_scale
brushnet_down_block_res_samples = [sample * scale for sample, scale in zip(brushnet_down_block_res_samples,
scales[:len(
brushnet_down_block_res_samples)])]
brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
brushnet_up_block_res_samples = [sample * scale for sample, scale in zip(brushnet_up_block_res_samples,
scales[
len(brushnet_down_block_res_samples) + 1:])]
else:
brushnet_down_block_res_samples = [sample * conditioning_scale for sample in
brushnet_down_block_res_samples]
brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
if self.config.global_pool_conditions:
brushnet_down_block_res_samples = [
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
]
brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
brushnet_up_block_res_samples = [
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
]
if not return_dict:
return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
return BrushNetOutput(
down_block_res_samples=brushnet_down_block_res_samples,
mid_block_res_sample=brushnet_mid_block_res_sample,
up_block_res_samples=brushnet_up_block_res_samples
)
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
if __name__ == "__main__":
BrushNetModel.from_pretrained("/Users/cwq/data/models/brushnet/brushnet_random_mask", variant='fp16',
use_safetensors=True)

View File

@ -0,0 +1,322 @@
from typing import Union, Optional, Dict, Any, Tuple
import torch
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
from diffusers.utils import USE_PEFT_BACKEND, unscale_lora_layers, deprecate, scale_lora_layers
def brushnet_unet_forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
down_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None,
up_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
) -> Union[UNet2DConditionOutput, Tuple]:
r"""
The [`UNet2DConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
through the `self.time_embedding` layer to obtain the timestep embeddings.
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
A tuple of tensors that if specified are added to the residuals of down unet blocks.
mid_block_additional_residual: (`torch.Tensor`, *optional*):
A tensor that if specified is added to the residual of the middle unet block.
encoder_attention_mask (`torch.Tensor`):
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
which adds large negative values to the attention scores corresponding to "discard" tokens.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
example from ControlNet side model(s)
mid_block_additional_residual (`torch.Tensor`, *optional*):
additional residual to be added to UNet mid block output, for example from ControlNet side model
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
Returns:
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2 ** self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
for dim in sample.shape[-2:]:
if dim % default_overall_up_factor != 0:
# Forward upsample size to force interpolation output size.
forward_upsample_size = True
break
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
if class_emb is not None:
if self.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
aug_emb = self.get_aug_embed(
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
)
if self.config.addition_embed_type == "image_hint":
aug_emb, hint = aug_emb
sample = torch.cat([sample, hint], dim=1)
emb = emb + aug_emb if aug_emb is not None else emb
if self.time_embed_act is not None:
emb = self.time_embed_act(emb)
encoder_hidden_states = self.process_encoder_hidden_states(
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
)
# 2. pre-process
sample = self.conv_in(sample)
# 2.5 GLIGEN position net
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
cross_attention_kwargs = cross_attention_kwargs.copy()
gligen_args = cross_attention_kwargs.pop("gligen")
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
# 3. down
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
is_adapter = down_intrablock_additional_residuals is not None
# maintain backward compatibility for legacy usage, where
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
# but can only use one or the other
is_brushnet = down_block_add_samples is not None and mid_block_add_sample is not None and up_block_add_samples is not None
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
deprecate(
"T2I should not use down_block_additional_residuals",
"1.3.0",
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
standard_warn=False,
)
down_intrablock_additional_residuals = down_block_additional_residuals
is_adapter = True
down_block_res_samples = (sample,)
if is_brushnet:
sample = sample + down_block_add_samples.pop(0)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
# For t2i-adapter CrossAttnDownBlock2D
additional_residuals = {}
if is_adapter and len(down_intrablock_additional_residuals) > 0:
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
if is_brushnet and len(down_block_add_samples) > 0:
additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
for _ in range(
len(downsample_block.resnets) + (downsample_block.downsamplers != None))]
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
**additional_residuals,
)
else:
additional_residuals = {}
if is_brushnet and len(down_block_add_samples) > 0:
additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
for _ in range(
len(downsample_block.resnets) + (downsample_block.downsamplers != None))]
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale,
**additional_residuals)
if is_adapter and len(down_intrablock_additional_residuals) > 0:
sample += down_intrablock_additional_residuals.pop(0)
down_block_res_samples += res_samples
if is_controlnet:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.mid_block is not None:
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample = self.mid_block(sample, emb)
# To support T2I-Adapter-XL
if (
is_adapter
and len(down_intrablock_additional_residuals) > 0
and sample.shape == down_intrablock_additional_residuals[0].shape
):
sample += down_intrablock_additional_residuals.pop(0)
if is_controlnet:
sample = sample + mid_block_additional_residual
if is_brushnet:
sample = sample + mid_block_add_sample
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
additional_residuals = {}
if is_brushnet and len(up_block_add_samples) > 0:
additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
for _ in range(
len(upsample_block.resnets) + (upsample_block.upsamplers != None))]
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
**additional_residuals,
)
else:
additional_residuals = {}
if is_brushnet and len(up_block_add_samples) > 0:
additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
for _ in range(
len(upsample_block.resnets) + (upsample_block.upsamplers != None))]
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
scale=lora_scale,
**additional_residuals,
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample)

View File

@ -0,0 +1,157 @@
import PIL.Image
import cv2
import torch
from loguru import logger
import numpy as np
from ..base import DiffusionInpaintModel
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
from ..original_sd_configs import get_config_files
from ..utils import (
handle_from_pretrained_exceptions,
get_torch_dtype,
enable_low_mem,
is_local_files_only,
)
from .brushnet import BrushNetModel
from .brushnet_unet_forward import brushnet_unet_forward
from .unet_2d_blocks import CrossAttnDownBlock2D_forward, DownBlock2D_forward, CrossAttnUpBlock2D_forward, \
UpBlock2D_forward
from ...schema import InpaintRequest, ModelType
class BrushNetWrapper(DiffusionInpaintModel):
pad_mod = 8
min_size = 512
def init_model(self, device: torch.device, **kwargs):
from .pipeline_brushnet import StableDiffusionBrushNetPipeline
self.model_info = kwargs["model_info"]
self.brushnet_method = kwargs["brushnet_method"]
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
self.torch_dtype = torch_dtype
model_kwargs = {
**kwargs.get("pipe_components", {}),
"local_files_only": is_local_files_only(**kwargs),
}
self.local_files_only = model_kwargs["local_files_only"]
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
"cpu_offload", False
)
if disable_nsfw_checker:
logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(
dict(
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
)
logger.info(f"Loading BrushNet model from {self.brushnet_method}")
brushnet = BrushNetModel.from_pretrained(self.brushnet_method, torch_dtype=torch_dtype)
if self.model_info.is_single_file_diffusers:
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
model_kwargs["num_in_channels"] = 4
else:
model_kwargs["num_in_channels"] = 9
self.model = StableDiffusionBrushNetPipeline.from_single_file(
self.model_id_or_path,
torch_dtype=torch_dtype,
load_safety_checker=not disable_nsfw_checker,
config_files=get_config_files(),
brushnet=brushnet,
**model_kwargs,
)
else:
self.model = handle_from_pretrained_exceptions(
StableDiffusionBrushNetPipeline.from_pretrained,
pretrained_model_name_or_path=self.model_id_or_path,
variant="fp16",
torch_dtype=torch_dtype,
brushnet=brushnet,
**model_kwargs,
)
enable_low_mem(self.model, kwargs.get("low_mem", False))
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
if kwargs["sd_cpu_textencoder"]:
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype
)
self.callback = kwargs.pop("callback", None)
# Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
self.model.unet.forward = brushnet_unet_forward.__get__(self.model.unet, self.model.unet.__class__)
for down_block in self.model.brushnet.down_blocks:
down_block.forward = DownBlock2D_forward.__get__(down_block, down_block.__class__)
for up_block in self.model.brushnet.up_blocks:
up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)
# Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
for down_block in self.model.unet.down_blocks:
if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
down_block.forward = CrossAttnDownBlock2D_forward.__get__(down_block, down_block.__class__)
else:
down_block.forward = DownBlock2D_forward.__get__(down_block, down_block.__class__)
for up_block in self.model.unet.up_blocks:
if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
up_block.forward = CrossAttnUpBlock2D_forward.__get__(up_block, up_block.__class__)
else:
up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)
def switch_brushnet_method(self, new_method: str):
self.brushnet_method = new_method
brushnet = BrushNetModel.from_pretrained(
new_method,
resume_download=True,
local_files_only=self.local_files_only,
torch_dtype=self.torch_dtype,
).to(self.model.device)
self.model.brushnet = brushnet
def forward(self, image, mask, config: InpaintRequest):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
self.set_scheduler(config)
img_h, img_w = image.shape[:2]
normalized_mask = mask[:, :].astype("float32") / 255.0
image = image * (1 - normalized_mask)
image = image.astype(np.uint8)
output = self.model(
image=PIL.Image.fromarray(image),
prompt=config.prompt,
negative_prompt=config.negative_prompt,
mask=PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB"),
num_inference_steps=config.sd_steps,
# strength=config.sd_strength,
guidance_scale=config.sd_guidance_scale,
output_type="np",
callback_on_step_end=self.callback,
height=img_h,
width=img_w,
generator=torch.manual_seed(config.sd_seed),
brushnet_conditioning_scale=config.brushnet_conditioning_scale,
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,388 @@
from typing import Dict, Any, Optional, Tuple
import torch
from diffusers.models.resnet import ResnetBlock2D
from diffusers.utils import is_torch_version
from diffusers.utils.torch_utils import apply_freeu
from torch import nn
class MidBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
use_linear_projection: bool = False,
):
super().__init__()
self.has_cross_attention = False
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
for i in range(num_layers):
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
lora_scale = 1.0
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
for resnet in self.resnets[1:]:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
return hidden_states
def DownBlock2D_forward(
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0,
down_block_add_samples: Optional[torch.FloatTensor] = None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb, scale=scale)
if down_block_add_samples is not None:
hidden_states = hidden_states + down_block_add_samples.pop(0)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states, scale=scale)
if down_block_add_samples is not None:
hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def CrossAttnDownBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
additional_residuals: Optional[torch.FloatTensor] = None,
down_block_add_samples: Optional[torch.FloatTensor] = None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
blocks = list(zip(self.resnets, self.attentions))
for i, (resnet, attn) in enumerate(blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
# apply additional residuals to the output of the last pair of resnet and attention blocks
if i == len(blocks) - 1 and additional_residuals is not None:
hidden_states = hidden_states + additional_residuals
if down_block_add_samples is not None:
hidden_states = hidden_states + down_block_add_samples.pop(0)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states, scale=lora_scale)
if down_block_add_samples is not None:
hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def CrossAttnUpBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
return_res_samples: Optional[bool] = False,
up_block_add_samples: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
if return_res_samples:
output_states = ()
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if return_res_samples:
output_states = output_states + (hidden_states,)
if up_block_add_samples is not None:
hidden_states = hidden_states + up_block_add_samples.pop(0)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
if return_res_samples:
output_states = output_states + (hidden_states,)
if up_block_add_samples is not None:
hidden_states = hidden_states + up_block_add_samples.pop(0)
if return_res_samples:
return hidden_states, output_states
else:
return hidden_states
def UpBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
upsample_size: Optional[int] = None,
scale: float = 1.0,
return_res_samples: Optional[bool] = False,
up_block_add_samples: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
if return_res_samples:
output_states = ()
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb, scale=scale)
if return_res_samples:
output_states = output_states + (hidden_states,)
if up_block_add_samples is not None:
hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
if return_res_samples:
output_states = output_states + (hidden_states,)
if up_block_add_samples is not None:
hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after
if return_res_samples:
return hidden_states, output_states
else:
return hidden_states

View File

@ -7,6 +7,7 @@ import numpy as np
from iopaint.download import scan_models from iopaint.download import scan_models
from iopaint.helper import switch_mps_device from iopaint.helper import switch_mps_device
from iopaint.model import models, ControlNet, SD, SDXL from iopaint.model import models, ControlNet, SD, SDXL
from iopaint.model.brushnet.brushnet_wrapper import BrushNetWrapper
from iopaint.model.utils import torch_gc, is_local_files_only from iopaint.model.utils import torch_gc, is_local_files_only
from iopaint.schema import InpaintRequest, ModelInfo, ModelType from iopaint.schema import InpaintRequest, ModelInfo, ModelType
@ -22,12 +23,16 @@ class ModelManager:
self.enable_controlnet = kwargs.get("enable_controlnet", False) self.enable_controlnet = kwargs.get("enable_controlnet", False)
controlnet_method = kwargs.get("controlnet_method", None) controlnet_method = kwargs.get("controlnet_method", None)
if ( if (
controlnet_method is None controlnet_method is None
and name in self.available_models and name in self.available_models
and self.available_models[name].support_controlnet and self.available_models[name].support_controlnet
): ):
controlnet_method = self.available_models[name].controlnets[0] controlnet_method = self.available_models[name].controlnets[0]
self.controlnet_method = controlnet_method self.controlnet_method = controlnet_method
self.enable_brushnet = kwargs.get("enable_brushnet", False)
self.brushnet_method = kwargs.get("brushnet_method", None)
self.model = self.init_model(name, device, **kwargs) self.model = self.init_model(name, device, **kwargs)
@property @property
@ -47,24 +52,30 @@ class ModelManager:
"model_info": model_info, "model_info": model_info,
"enable_controlnet": self.enable_controlnet, "enable_controlnet": self.enable_controlnet,
"controlnet_method": self.controlnet_method, "controlnet_method": self.controlnet_method,
"enable_brushnet": self.enable_brushnet,
"brushnet_method": self.brushnet_method,
} }
if model_info.support_controlnet and self.enable_controlnet: if model_info.support_controlnet and self.enable_controlnet:
return ControlNet(device, **kwargs) return ControlNet(device, **kwargs)
elif model_info.name in models:
return models[name](device, **kwargs)
else:
if model_info.model_type in [
ModelType.DIFFUSERS_SD_INPAINT,
ModelType.DIFFUSERS_SD,
]:
return SD(device, **kwargs)
if model_info.model_type in [ if model_info.support_brushnet and self.enable_brushnet:
ModelType.DIFFUSERS_SDXL_INPAINT, return BrushNetWrapper(device, **kwargs)
ModelType.DIFFUSERS_SDXL,
]: if model_info.name in models:
return SDXL(device, **kwargs) return models[name](device, **kwargs)
if model_info.model_type in [
ModelType.DIFFUSERS_SD_INPAINT,
ModelType.DIFFUSERS_SD,
]:
return SD(device, **kwargs)
if model_info.model_type in [
ModelType.DIFFUSERS_SDXL_INPAINT,
ModelType.DIFFUSERS_SDXL,
]:
return SDXL(device, **kwargs)
raise NotImplementedError(f"Unsupported model: {name}") raise NotImplementedError(f"Unsupported model: {name}")
@ -80,7 +91,10 @@ class ModelManager:
Returns: Returns:
BGR image BGR image
""" """
self.switch_controlnet_method(config) if not config.enable_brushnet:
self.switch_controlnet_method(config)
if not config.enable_controlnet:
self.switch_brushnet_method(config)
self.enable_disable_freeu(config) self.enable_disable_freeu(config)
self.enable_disable_lcm_lora(config) self.enable_disable_lcm_lora(config)
return self.model(image, mask, config).astype(np.uint8) return self.model(image, mask, config).astype(np.uint8)
@ -99,9 +113,9 @@ class ModelManager:
self.name = new_name self.name = new_name
if ( if (
self.available_models[new_name].support_controlnet self.available_models[new_name].support_controlnet
and self.controlnet_method and self.controlnet_method
not in self.available_models[new_name].controlnets not in self.available_models[new_name].controlnets
): ):
self.controlnet_method = self.available_models[new_name].controlnets[0] self.controlnet_method = self.available_models[new_name].controlnets[0]
try: try:
@ -121,14 +135,54 @@ class ModelManager:
) )
raise e raise e
def switch_brushnet_method(self, config):
if not self.available_models[self.name].support_brushnet:
return
if (
self.enable_brushnet
and config.brushnet_method
and self.brushnet_method != config.brushnet_method
):
old_brushnet_method = self.brushnet_method
self.brushnet_method = config.brushnet_method
self.model.switch_brushnet_method(config.brushnet_method)
logger.info(
f"Switch Brushnet method from {old_brushnet_method} to {config.brushnet_method}"
)
elif self.enable_brushnet != config.enable_brushnet:
self.enable_brushnet = config.enable_brushnet
self.brushnet_method = config.brushnet_method
pipe_components = {
"vae": self.model.model.vae,
"text_encoder": self.model.model.text_encoder,
"unet": self.model.model.unet,
}
if hasattr(self.model.model, "text_encoder_2"):
pipe_components["text_encoder_2"] = self.model.model.text_encoder_2
self.model = self.init_model(
self.name,
switch_mps_device(self.name, self.device),
pipe_components=pipe_components,
**self.kwargs,
)
if not config.enable_brushnet:
logger.info("BrushNet Disabled")
else:
logger.info("BrushNet Enabled")
def switch_controlnet_method(self, config): def switch_controlnet_method(self, config):
if not self.available_models[self.name].support_controlnet: if not self.available_models[self.name].support_controlnet:
return return
if ( if (
self.enable_controlnet self.enable_controlnet
and config.controlnet_method and config.controlnet_method
and self.controlnet_method != config.controlnet_method and self.controlnet_method != config.controlnet_method
): ):
old_controlnet_method = self.controlnet_method old_controlnet_method = self.controlnet_method
self.controlnet_method = config.controlnet_method self.controlnet_method = config.controlnet_method
@ -155,7 +209,7 @@ class ModelManager:
**self.kwargs, **self.kwargs,
) )
if not config.enable_controlnet: if not config.enable_controlnet:
logger.info(f"Disable controlnet") logger.info("Disable controlnet")
else: else:
logger.info(f"Enable controlnet: {config.controlnet_method}") logger.info(f"Enable controlnet: {config.controlnet_method}")

View File

@ -3,6 +3,8 @@ from enum import Enum
from pathlib import Path from pathlib import Path
from typing import Optional, Literal, List from typing import Optional, Literal, List
from loguru import logger
from iopaint.const import ( from iopaint.const import (
INSTRUCT_PIX2PIX_NAME, INSTRUCT_PIX2PIX_NAME,
KANDINSKY22_NAME, KANDINSKY22_NAME,
@ -11,9 +13,9 @@ from iopaint.const import (
SDXL_CONTROLNET_CHOICES, SDXL_CONTROLNET_CHOICES,
SD2_CONTROLNET_CHOICES, SD2_CONTROLNET_CHOICES,
SD_CONTROLNET_CHOICES, SD_CONTROLNET_CHOICES,
SD_BRUSHNET_CHOICES,
) )
from loguru import logger from pydantic import BaseModel, Field, computed_field, model_validator
from pydantic import BaseModel, Field, field_validator, computed_field
class ModelType(str, Enum): class ModelType(str, Enum):
@ -63,6 +65,13 @@ class ModelInfo(BaseModel):
return SD_CONTROLNET_CHOICES return SD_CONTROLNET_CHOICES
return [] return []
@computed_field
@property
def brushnets(self) -> List[str]:
if self.model_type in [ModelType.DIFFUSERS_SD]:
return SD_BRUSHNET_CHOICES
return []
@computed_field @computed_field
@property @property
def support_strength(self) -> bool: def support_strength(self) -> bool:
@ -103,6 +112,13 @@ class ModelInfo(BaseModel):
ModelType.DIFFUSERS_SDXL_INPAINT, ModelType.DIFFUSERS_SDXL_INPAINT,
] ]
@computed_field
@property
def support_brushnet(self) -> bool:
return self.model_type in [
ModelType.DIFFUSERS_SD,
]
@computed_field @computed_field
@property @property
def support_freeu(self) -> bool: def support_freeu(self) -> bool:
@ -369,6 +385,13 @@ class InpaintRequest(BaseModel):
"lllyasviel/control_v11p_sd15_canny", description="Controlnet method" "lllyasviel/control_v11p_sd15_canny", description="Controlnet method"
) )
# BrushNet
enable_brushnet: bool = Field(False, description="Enable brushnet")
brushnet_method: str = Field(
SD_BRUSHNET_CHOICES[0], description="Brushnet method"
)
brushnet_conditioning_scale: float = Field(1.0, description="brushnet conditioning scale", ge=0.0, le=1.0)
# PowerPaint # PowerPaint
powerpaint_task: PowerPaintTask = Field( powerpaint_task: PowerPaintTask = Field(
PowerPaintTask.text_guided, description="PowerPaint task" PowerPaintTask.text_guided, description="PowerPaint task"
@ -380,31 +403,37 @@ class InpaintRequest(BaseModel):
le=1.0, le=1.0,
) )
@field_validator("sd_seed") @model_validator(mode='after')
@classmethod def validate_field(cls, values: 'InpaintRequest'):
def sd_seed_validator(cls, v: int) -> int: if values.sd_seed == -1:
if v == -1: values.sd_seed = random.randint(1, 99999999)
return random.randint(1, 99999999) logger.info(f"Generate random seed: {values.sd_seed}")
return v
@field_validator("controlnet_conditioning_scale") if values.use_extender and values.enable_controlnet:
@classmethod logger.info("Extender is enabled, set controlnet_conditioning_scale=0")
def validate_field(cls, v: float, values): values.controlnet_conditioning_scale = 0
use_extender = values.data["use_extender"]
enable_controlnet = values.data["enable_controlnet"]
if use_extender and enable_controlnet:
logger.info(f"Extender is enabled, set controlnet_conditioning_scale=0")
return 0
return v
@field_validator("sd_strength") if values.use_extender:
@classmethod logger.info("Extender is enabled, set sd_strength=1")
def validate_sd_strength(cls, v: float, values): values.sd_strength = 1.0
use_extender = values.data["use_extender"]
if use_extender: if values.enable_brushnet:
logger.info(f"Extender is enabled, set sd_strength=1") logger.info("BrushNet is enabled, set enable_controlnet=False")
return 1.0 if values.enable_controlnet:
return v values.enable_controlnet = False
if values.sd_lcm_lora:
logger.info("BrushNet is enabled, set sd_lcm_lora=False")
values.sd_lcm_lora = False
if values.sd_freeu:
logger.info("BrushNet is enabled, set sd_freeu=False")
values.sd_freeu = False
if values.enable_controlnet:
logger.info("ControlNet is enabled, set enable_brushnet=False")
if values.enable_brushnet:
values.enable_brushnet = False
return values
class RunPluginRequest(BaseModel): class RunPluginRequest(BaseModel):

View File

@ -0,0 +1,89 @@
import os
from iopaint.const import SD_BRUSHNET_CHOICES
from iopaint.tests.utils import check_device, get_config, assert_equal
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from pathlib import Path
import pytest
import torch
from iopaint.model_manager import ModelManager
from iopaint.schema import HDStrategy, SDSampler, FREEUConfig
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True)
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
@pytest.mark.parametrize("sampler", [SDSampler.dpm_plus_plus_2m_karras])
def test_runway_brushnet(device, sampler):
sd_steps = check_device(device)
model = ModelManager(
name="runwayml/stable-diffusion-v1-5",
device=torch.device(device),
disable_nsfw=True,
sd_cpu_textencoder=False,
)
cfg = get_config(
strategy=HDStrategy.ORIGINAL,
prompt="face of a fox, sitting on a bench",
sd_steps=sd_steps,
sd_guidance_scale=7.5,
sd_freeu=True,
sd_freeu_config=FREEUConfig(),
enable_brushnet=True,
brushnet_method=SD_BRUSHNET_CHOICES[0]
)
cfg.sd_sampler = sampler
assert_equal(
model,
cfg,
f"brushnet_runway_1_5_freeu_device_{device}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)
@pytest.mark.parametrize("device", ["cuda", "mps"])
@pytest.mark.parametrize("sampler", [SDSampler.dpm_plus_plus_2m_karras])
@pytest.mark.parametrize(
"name",
[
"v1-5-pruned-emaonly.safetensors",
],
)
def test_brushnet_local_file_path(device, sampler, name):
sd_steps = check_device(device)
model = ModelManager(
name=name,
device=torch.device(device),
disable_nsfw=True,
sd_cpu_textencoder=False,
cpu_offload=False,
)
cfg = get_config(
strategy=HDStrategy.ORIGINAL,
prompt="face of a fox, sitting on a bench",
sd_steps=sd_steps,
sd_seed=1234,
enable_brushnet=True,
brushnet_method=SD_BRUSHNET_CHOICES[1]
)
cfg.sd_sampler = sampler
name = f"device_{device}_{sampler}_{name}"
is_sdxl = "sd_xl" in name
assert_equal(
model,
cfg,
f"brushnet_sd_local_model_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.5 if is_sdxl else 1,
fy=1.5 if is_sdxl else 1,
)

View File

@ -109,6 +109,84 @@ const DiffusionOptions = () => {
) )
} }
const renderBrushNetSetting = () => {
if (!settings.model.support_brushnet) {
return null
}
return (
<div className="flex flex-col gap-4">
<div className="flex flex-col gap-4">
<div className="flex justify-between items-center pr-2">
<LabelTitle
text="BrushNet"
toolTip="BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"
url="https://github.com/TencentARC/BrushNet"
/>
<Switch
id="brushnet"
checked={settings.enableBrushNet}
onCheckedChange={(value) => {
updateSettings({ enableBrushNet: value })
}}
/>
</div>
<div className="flex flex-col gap-1">
<RowContainer>
<Slider
className="w-[180px]"
defaultValue={[100]}
min={1}
max={100}
step={1}
disabled={!settings.enableBrushNet}
value={[Math.floor(settings.brushnetConditioningScale * 100)]}
onValueChange={(vals) =>
updateSettings({ brushnetConditioningScale: vals[0] / 100 })
}
/>
<NumberInput
id="controlnet-weight"
className="w-[60px] rounded-full"
disabled={!settings.enableBrushNet}
numberValue={settings.brushnetConditioningScale}
allowFloat={false}
onNumberValueChange={(val) => {
updateSettings({ brushnetConditioningScale: val })
}}
/>
</RowContainer>
</div>
<div className="pr-2">
<Select
defaultValue={settings.brushnetMethod}
value={settings.brushnetMethod}
onValueChange={(value) => {
updateSettings({ brushnetMethod: value })
}}
disabled={!settings.enableBrushNet}
>
<SelectTrigger>
<SelectValue placeholder="Select brushnet model" />
</SelectTrigger>
<SelectContent align="end">
<SelectGroup>
{Object.values(settings.model.brushnets).map((method) => (
<SelectItem key={method} value={method}>
{method}
</SelectItem>
))}
</SelectGroup>
</SelectContent>
</Select>
</div>
</div>
<Separator />
</div>
)
}
const renderConterNetSetting = () => { const renderConterNetSetting = () => {
if (!settings.model.support_controlnet) { if (!settings.model.support_controlnet) {
return null return null
@ -881,6 +959,7 @@ const DiffusionOptions = () => {
{renderSeed()} {renderSeed()}
{renderNegativePrompt()} {renderNegativePrompt()}
<Separator /> <Separator />
{renderBrushNetSetting()}
{renderConterNetSetting()} {renderConterNetSetting()}
{renderLCMLora()} {renderLCMLora()}
{renderMaskBlur()} {renderMaskBlur()}

View File

@ -78,6 +78,9 @@ export default async function inpaint(
controlnet_method: settings.controlnetMethod controlnet_method: settings.controlnetMethod
? settings.controlnetMethod ? settings.controlnetMethod
: "", : "",
enable_brushnet: settings.enableBrushNet,
brushnet_method: settings.brushnetMethod ? settings.brushnetMethod : "",
brushnet_conditioning_scale: settings.brushnetConditioningScale,
powerpaint_task: settings.showExtender powerpaint_task: settings.showExtender
? PowerPaintTask.outpainting ? PowerPaintTask.outpainting
: settings.powerpaintTask, : settings.powerpaintTask,

View File

@ -99,6 +99,11 @@ export type Settings = {
controlnetConditioningScale: number controlnetConditioningScale: number
controlnetMethod: string controlnetMethod: string
// BrushNet
enableBrushNet: boolean
brushnetMethod: string
brushnetConditioningScale: number
enableLCMLora: boolean enableLCMLora: boolean
enableFreeu: boolean enableFreeu: boolean
freeuConfig: FreeuConfig freeuConfig: FreeuConfig
@ -306,15 +311,16 @@ const defaultValues: AppState = {
path: "lama", path: "lama",
model_type: "inpaint", model_type: "inpaint",
support_controlnet: false, support_controlnet: false,
support_brushnet: false,
support_strength: false, support_strength: false,
support_outpainting: false, support_outpainting: false,
controlnets: [], controlnets: [],
brushnets: [],
support_freeu: false, support_freeu: false,
support_lcm_lora: false, support_lcm_lora: false,
is_single_file_diffusers: false, is_single_file_diffusers: false,
need_prompt: false, need_prompt: false,
}, },
enableControlnet: false,
showCropper: false, showCropper: false,
showExtender: false, showExtender: false,
extenderDirection: ExtenderDirection.xy, extenderDirection: ExtenderDirection.xy,
@ -339,8 +345,12 @@ const defaultValues: AppState = {
sdMatchHistograms: false, sdMatchHistograms: false,
sdScale: 1.0, sdScale: 1.0,
p2pImageGuidanceScale: 1.5, p2pImageGuidanceScale: 1.5,
controlnetConditioningScale: 0.4, enableControlnet: false,
controlnetMethod: "lllyasviel/control_v11p_sd15_canny", controlnetMethod: "lllyasviel/control_v11p_sd15_canny",
controlnetConditioningScale: 0.4,
enableBrushNet: false,
brushnetMethod: "random_mask",
brushnetConditioningScale: 1.0,
enableLCMLora: false, enableLCMLora: false,
enableFreeu: false, enableFreeu: false,
freeuConfig: { s1: 0.9, s2: 0.2, b1: 1.2, b2: 1.4 }, freeuConfig: { s1: 0.9, s2: 0.2, b1: 1.2, b2: 1.4 },
@ -1076,7 +1086,7 @@ export const useStore = createWithEqualityFn<AppState & AppAction>()(
})), })),
{ {
name: "ZUSTAND_STATE", // name of the item in the storage (must be unique) name: "ZUSTAND_STATE", // name of the item in the storage (must be unique)
version: 1, version: 2,
partialize: (state) => partialize: (state) =>
Object.fromEntries( Object.fromEntries(
Object.entries(state).filter(([key]) => Object.entries(state).filter(([key]) =>

View File

@ -48,7 +48,9 @@ export interface ModelInfo {
support_strength: boolean support_strength: boolean
support_outpainting: boolean support_outpainting: boolean
support_controlnet: boolean support_controlnet: boolean
support_brushnet: boolean
controlnets: string[] controlnets: string[]
brushnets: string[]
support_freeu: boolean support_freeu: boolean
support_lcm_lora: boolean support_lcm_lora: boolean
need_prompt: boolean need_prompt: boolean