This commit is contained in:
Qing 2023-11-16 11:08:34 +08:00
parent 8f942e27c4
commit 0cfec489b7
7 changed files with 63 additions and 28 deletions

View File

@ -33,10 +33,10 @@ AVAILABLE_MODELS = [
"paint_by_example",
"instruct_pix2pix",
"kandinsky2.2",
"sdxl"
"sdxl",
]
SD15_MODELS = ["sd1.5", "anything4", "realisticVision1.4"]
MODELS_SUPPORT_FREEU = SD15_MODELS + ['sd2', "sdxl"]
MODELS_SUPPORT_FREEU = SD15_MODELS + ["sd2", "sdxl"]
MODELS_SUPPORT_LCM_LORA = SD15_MODELS + ["sdxl"]
AVAILABLE_DEVICES = ["cuda", "cpu", "mps"]
@ -110,6 +110,14 @@ QUALITY_HELP = """
Quality of image encoding, 0-100. Default is 95, higher quality will generate larger file size.
"""
FREEU_DEFAULT_CONFIGS = {
"sd2": dict(s1=0.9, s2=0.2, b1=1.1, b2=1.2),
"sdxl": dict(s1=0.6, s2=0.4, b1=1.1, b2=1.2),
"sd1.5": dict(s1=0.9, s2=0.2, b1=1.2, b2=1.4),
"anything4": dict(s1=0.9, s2=0.2, b1=1.2, b2=1.4),
"realisticVision1.4": dict(s1=0.9, s2=0.2, b1=1.2, b2=1.4),
}
class RealESRGANModelName(str, Enum):
realesr_general_x4v3 = "realesr-general-x4v3"

View File

@ -12,8 +12,9 @@ from lama_cleaner.model.utils import torch_gc, get_scheduler
from lama_cleaner.schema import Config
class CPUTextEncoderWrapper:
class CPUTextEncoderWrapper(torch.nn.Module):
def __init__(self, text_encoder, torch_dtype):
super().__init__()
self.config = text_encoder.config
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)

View File

@ -285,6 +285,28 @@ class StableDiffusionControlNetInpaintPipeline(StableDiffusionControlNetPipeline
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
def _default_height_width(self, height, width, image):
if isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[3]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[2]
width = (width // 8) * 8 # round down to nearest multiple of 8
return height, width
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@ -402,14 +424,11 @@ class StableDiffusionControlNetInpaintPipeline(StableDiffusionControlNetPipeline
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
control_image,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt=prompt,
image=control_image,
callback_steps=callback_steps,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 2. Define call parameters

View File

@ -7,12 +7,13 @@ import torch
from loguru import logger
from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.utils import torch_gc, get_scheduler
from lama_cleaner.schema import Config, SDSampler
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.schema import Config
class CPUTextEncoderWrapper:
class CPUTextEncoderWrapper(torch.nn.Module):
def __init__(self, text_encoder, torch_dtype):
super().__init__()
self.config = text_encoder.config
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)

View File

@ -18,7 +18,12 @@ import torch
from PIL import Image
from loguru import logger
from lama_cleaner.const import SD15_MODELS
from lama_cleaner.const import (
SD15_MODELS,
FREEU_DEFAULT_CONFIGS,
MODELS_SUPPORT_FREEU,
MODELS_SUPPORT_LCM_LORA,
)
from lama_cleaner.file_manager import FileManager
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.model_manager import ModelManager
@ -421,6 +426,9 @@ def get_server_config():
"isEnableAutoSaving": is_enable_auto_saving,
"enableFileManager": is_enable_file_manager,
"plugins": list(plugins.keys()),
"freeSupportedModels": MODELS_SUPPORT_FREEU,
"freeuDefaultConfigs": FREEU_DEFAULT_CONFIGS,
"lcmLoraSupportedModels": MODELS_SUPPORT_LCM_LORA,
}, 200

View File

@ -10,13 +10,13 @@ from lama_cleaner.schema import HDStrategy
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / 'result'
save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'mps'
@pytest.mark.parametrize("disable_nsfw", [True, False])
@pytest.mark.parametrize("cpu_offload", [False, True])
def test_instruct_pix2pix(disable_nsfw, cpu_offload):
sd_steps = 50 if device == 'cuda' else 1
sd_steps = 50 if device == 'cuda' else 20
model = ModelManager(name="instruct_pix2pix",
device=torch.device(device),
hf_access_token="",
@ -41,7 +41,7 @@ def test_instruct_pix2pix(disable_nsfw, cpu_offload):
@pytest.mark.parametrize("disable_nsfw", [False])
@pytest.mark.parametrize("cpu_offload", [False])
def test_instruct_pix2pix_snow(disable_nsfw, cpu_offload):
sd_steps = 50 if device == 'cuda' else 1
sd_steps = 50 if device == 'cuda' else 20
model = ModelManager(name="instruct_pix2pix",
device=torch.device(device),
hf_access_token="",

View File

@ -13,11 +13,9 @@ from lama_cleaner.tests.test_model import get_config, assert_equal
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
@pytest.mark.parametrize("cpu_textencoder", [True, False])
@ -56,7 +54,7 @@ def test_runway_sd_1_5_ddim(
)
@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize(
"sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a]
@ -95,7 +93,7 @@ def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_ns
)
@pytest.mark.parametrize("sd_device", ["mps"])
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
@pytest.mark.parametrize("sd_prevent_unmasked_area", [False, True])
@ -140,7 +138,7 @@ def test_runway_sd_1_5_negative_prompt(
)
@pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
@pytest.mark.parametrize("cpu_textencoder", [False])
@ -151,7 +149,7 @@ def test_runway_sd_1_5_sd_scale(
if sd_device == "cuda" and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == "cuda" else 1
sd_steps = 50 if sd_device == "cuda" else 20
model = ModelManager(
name="sd1.5",
device=torch.device(sd_device),
@ -177,7 +175,7 @@ def test_runway_sd_1_5_sd_scale(
)
@pytest.mark.parametrize("sd_device", ["mps"])
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
def test_runway_sd_sd_strength(sd_device, strategy, sampler):
@ -214,7 +212,7 @@ def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler):
if sd_device == "cuda" and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == "cuda" else 1
sd_steps = 50 if sd_device == "cuda" else 20
model = ModelManager(
name="sd1.5",
device=torch.device(sd_device),
@ -246,7 +244,7 @@ def test_local_file_path(sd_device, sampler):
if sd_device == "cuda" and not torch.cuda.is_available():
return
sd_steps = 1 if sd_device == "cpu" else 50
sd_steps = 1 if sd_device == "cpu" else 30
model = ModelManager(
name="sd1.5",
device=torch.device(sd_device),