remove scikit-image
This commit is contained in:
parent
95245425eb
commit
0d89c37ef1
@ -2,8 +2,6 @@ import os
|
|||||||
import time
|
import time
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import skimage
|
|
||||||
from skimage import color, feature
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
@ -170,15 +168,19 @@ def load_image(img, mask, device, sigma256=3.0):
|
|||||||
# https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
|
# https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny
|
||||||
# low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
|
# low_threshold: Lower bound for hysteresis thresholding (linking edges). If None, low_threshold is set to 10% of dtype’s max.
|
||||||
# high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
|
# high_threshold: Upper bound for hysteresis thresholding (linking edges). If None, high_threshold is set to 20% of dtype’s max.
|
||||||
gray_256 = color.rgb2gray(img_256)
|
|
||||||
edge_256 = feature.canny(gray_256, sigma=sigma256, mask=None).astype(float)
|
|
||||||
# cv2.imwrite("skimage_gray.jpg", (_gray_256*255).astype(np.uint8))
|
|
||||||
# cv2.imwrite("skimage_edge.jpg", (_edge_256*255).astype(np.uint8))
|
|
||||||
|
|
||||||
# gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
|
try:
|
||||||
# gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(3,3), sigmaX=sigma256, sigmaY=sigma256)
|
import skimage
|
||||||
# edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
|
gray_256 = skimage.color.rgb2gray(img_256)
|
||||||
# cv2.imwrite("edge.jpg", edge_256)
|
edge_256 = skimage.feature.canny(gray_256, sigma=3.0, mask=None).astype(float)
|
||||||
|
# cv2.imwrite("skimage_gray.jpg", (gray_256*255).astype(np.uint8))
|
||||||
|
# cv2.imwrite("skimage_edge.jpg", (edge_256*255).astype(np.uint8))
|
||||||
|
except:
|
||||||
|
gray_256 = cv2.cvtColor(img_256, cv2.COLOR_RGB2GRAY)
|
||||||
|
gray_256_blured = cv2.GaussianBlur(gray_256, ksize=(7, 7), sigmaX=sigma256, sigmaY=sigma256)
|
||||||
|
edge_256 = cv2.Canny(gray_256_blured, threshold1=int(255*0.1), threshold2=int(255*0.2))
|
||||||
|
|
||||||
|
# cv2.imwrite("opencv_edge.jpg", edge_256)
|
||||||
|
|
||||||
# line
|
# line
|
||||||
img_512 = resize(img, 512, 512)
|
img_512 = resize(img, 512, 512)
|
||||||
@ -381,10 +383,14 @@ class ZITS(InpaintModel):
|
|||||||
|
|
||||||
for line, score in zip(lines_masked, scores_masked):
|
for line, score in zip(lines_masked, scores_masked):
|
||||||
if score > mask_th:
|
if score > mask_th:
|
||||||
rr, cc, value = skimage.draw.line_aa(
|
try:
|
||||||
*to_int(line[0:2]), *to_int(line[2:4])
|
import skimage
|
||||||
)
|
rr, cc, value = skimage.draw.line_aa(
|
||||||
lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
|
*to_int(line[0:2]), *to_int(line[2:4])
|
||||||
|
)
|
||||||
|
lmap[rr, cc] = np.maximum(lmap[rr, cc], value)
|
||||||
|
except:
|
||||||
|
cv2.line(lmap, to_int(line[0:2][::-1]), to_int(line[2:4][::-1]), (1, 1, 1), 1, cv2.LINE_AA)
|
||||||
|
|
||||||
lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
|
lmap = np.clip(lmap * 255, 0, 255).astype(np.uint8)
|
||||||
lines_tensor.append(to_tensor(lmap).unsqueeze(0))
|
lines_tensor.append(to_tensor(lmap).unsqueeze(0))
|
||||||
|
@ -11,7 +11,6 @@ loguru
|
|||||||
pytest
|
pytest
|
||||||
yacs
|
yacs
|
||||||
markupsafe==2.0.1
|
markupsafe==2.0.1
|
||||||
scikit-image==0.19.3
|
|
||||||
diffusers[torch]==0.14.0
|
diffusers[torch]==0.14.0
|
||||||
transformers==4.27.4
|
transformers==4.27.4
|
||||||
gradio
|
gradio
|
||||||
|
Loading…
Reference in New Issue
Block a user