add DiffusionInpaintModel
This commit is contained in:
parent
96659f2aef
commit
205170e1e5
@ -123,32 +123,3 @@ def make_compare_gif(
|
||||
loop=0
|
||||
)
|
||||
return img_byte_arr.getvalue()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
imgs = [
|
||||
(
|
||||
'/Users/qing/code/github/lama-cleaner/assets/unwant_person.jpg',
|
||||
'/Users/qing/code/github/lama-cleaner/assets/unwant_person_clean.jpg'
|
||||
),
|
||||
# (
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/old_photo.jpg',
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/old_photo_clean.jpg'
|
||||
# ),
|
||||
# (
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/unwant_object.jpg',
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/unwant_object_clean.jpg'
|
||||
# ),
|
||||
# (
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/unwant_text.jpg',
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/unwant_text_clean.jpg'
|
||||
# ),
|
||||
# (
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/watermark.jpg',
|
||||
# '/Users/qing/code/github/lama-cleaner/assets/watermark_cleanup.jpg'
|
||||
# ),
|
||||
]
|
||||
for src_p, clean_p in imgs:
|
||||
img_bytes = make_compare_gif(Image.open(src_p), Image.open(clean_p), max_side_length=600)
|
||||
with open(Path(src_p).with_suffix('.gif'), 'wb') as f:
|
||||
f.write(img_bytes)
|
||||
|
@ -245,3 +245,42 @@ class InpaintModel:
|
||||
crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)
|
||||
|
||||
return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]
|
||||
|
||||
|
||||
class DiffusionInpaintModel(InpaintModel):
|
||||
@torch.no_grad()
|
||||
def __call__(self, image, mask, config: Config):
|
||||
"""
|
||||
images: [H, W, C] RGB, not normalized
|
||||
masks: [H, W]
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
# boxes = boxes_from_mask(mask)
|
||||
if config.use_croper:
|
||||
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
|
||||
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
|
||||
inpaint_result = image[:, :, ::-1]
|
||||
inpaint_result[t:b, l:r, :] = crop_image
|
||||
else:
|
||||
inpaint_result = self._scaled_pad_forward(image, mask, config)
|
||||
|
||||
return inpaint_result
|
||||
|
||||
def _scaled_pad_forward(self, image, mask, config: Config):
|
||||
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
|
||||
origin_size = image.shape[:2]
|
||||
downsize_image = resize_max_size(image, size_limit=longer_side_length)
|
||||
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
|
||||
logger.info(
|
||||
f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
|
||||
)
|
||||
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
|
||||
# only paste masked area result
|
||||
inpaint_result = cv2.resize(
|
||||
inpaint_result,
|
||||
(origin_size[1], origin_size[0]),
|
||||
interpolation=cv2.INTER_CUBIC,
|
||||
)
|
||||
original_pixel_indices = mask < 127
|
||||
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
||||
return inpaint_result
|
||||
|
@ -1,19 +1,16 @@
|
||||
import random
|
||||
|
||||
import PIL
|
||||
import PIL.Image
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import resize_max_size
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from lama_cleaner.model.base import DiffusionInpaintModel
|
||||
from lama_cleaner.model.utils import set_seed
|
||||
from lama_cleaner.schema import Config
|
||||
|
||||
|
||||
class PaintByExample(InpaintModel):
|
||||
class PaintByExample(DiffusionInpaintModel):
|
||||
pad_mod = 8
|
||||
min_size = 512
|
||||
|
||||
@ -53,11 +50,7 @@ class PaintByExample(InpaintModel):
|
||||
mask: [H, W, 1] 255 means area to repaint
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
seed = config.paint_by_example_seed
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
set_seed(config.paint_by_example_seed)
|
||||
|
||||
output = self.model(
|
||||
image=PIL.Image.fromarray(image),
|
||||
@ -71,42 +64,6 @@ class PaintByExample(InpaintModel):
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
return output
|
||||
|
||||
def _scaled_pad_forward(self, image, mask, config: Config):
|
||||
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
|
||||
origin_size = image.shape[:2]
|
||||
downsize_image = resize_max_size(image, size_limit=longer_side_length)
|
||||
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
|
||||
logger.info(
|
||||
f"Resize image to do paint_by_example: {image.shape} -> {downsize_image.shape}"
|
||||
)
|
||||
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
|
||||
# only paste masked area result
|
||||
inpaint_result = cv2.resize(
|
||||
inpaint_result,
|
||||
(origin_size[1], origin_size[0]),
|
||||
interpolation=cv2.INTER_CUBIC,
|
||||
)
|
||||
original_pixel_indices = mask < 127
|
||||
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
||||
return inpaint_result
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, image, mask, config: Config):
|
||||
"""
|
||||
images: [H, W, C] RGB, not normalized
|
||||
masks: [H, W]
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
if config.use_croper:
|
||||
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
|
||||
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
|
||||
inpaint_result = image[:, :, ::-1]
|
||||
inpaint_result[t:b, l:r, :] = crop_image
|
||||
else:
|
||||
inpaint_result = self._scaled_pad_forward(image, mask, config)
|
||||
|
||||
return inpaint_result
|
||||
|
||||
def forward_post_process(self, result, image, mask, config):
|
||||
if config.paint_by_example_match_histograms:
|
||||
result = self._match_histograms(result, image[:, :, ::-1], mask)
|
||||
|
@ -8,9 +8,8 @@ from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerD
|
||||
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import resize_max_size
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from lama_cleaner.model.utils import torch_gc
|
||||
from lama_cleaner.model.base import DiffusionInpaintModel
|
||||
from lama_cleaner.model.utils import torch_gc, set_seed
|
||||
from lama_cleaner.schema import Config, SDSampler
|
||||
|
||||
|
||||
@ -28,7 +27,7 @@ class CPUTextEncoderWrapper:
|
||||
return [self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0].to(input_device).to(self.torch_dtype)]
|
||||
|
||||
|
||||
class SD(InpaintModel):
|
||||
class SD(DiffusionInpaintModel):
|
||||
pad_mod = 8
|
||||
min_size = 512
|
||||
|
||||
@ -73,25 +72,6 @@ class SD(InpaintModel):
|
||||
|
||||
self.callback = kwargs.pop("callback", None)
|
||||
|
||||
def _scaled_pad_forward(self, image, mask, config: Config):
|
||||
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
|
||||
origin_size = image.shape[:2]
|
||||
downsize_image = resize_max_size(image, size_limit=longer_side_length)
|
||||
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
|
||||
logger.info(
|
||||
f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
|
||||
)
|
||||
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
|
||||
# only paste masked area result
|
||||
inpaint_result = cv2.resize(
|
||||
inpaint_result,
|
||||
(origin_size[1], origin_size[0]),
|
||||
interpolation=cv2.INTER_CUBIC,
|
||||
)
|
||||
original_pixel_indices = mask < 127
|
||||
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
||||
return inpaint_result
|
||||
|
||||
def forward(self, image, mask, config: Config):
|
||||
"""Input image and output image have same size
|
||||
image: [H, W, C] RGB
|
||||
@ -118,11 +98,7 @@ class SD(InpaintModel):
|
||||
|
||||
self.model.scheduler = scheduler
|
||||
|
||||
seed = config.sd_seed
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
set_seed(config.sd_seed)
|
||||
|
||||
if config.sd_mask_blur != 0:
|
||||
k = 2 * config.sd_mask_blur + 1
|
||||
@ -147,24 +123,6 @@ class SD(InpaintModel):
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
return output
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, image, mask, config: Config):
|
||||
"""
|
||||
images: [H, W, C] RGB, not normalized
|
||||
masks: [H, W]
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
# boxes = boxes_from_mask(mask)
|
||||
if config.use_croper:
|
||||
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
|
||||
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
|
||||
inpaint_result = image[:, :, ::-1]
|
||||
inpaint_result[t:b, l:r, :] = crop_image
|
||||
else:
|
||||
inpaint_result = self._scaled_pad_forward(image, mask, config)
|
||||
|
||||
return inpaint_result
|
||||
|
||||
def forward_post_process(self, result, image, mask, config):
|
||||
if config.sd_match_histograms:
|
||||
result = self._match_histograms(result, image[:, :, ::-1], mask)
|
||||
|
@ -1,4 +1,5 @@
|
||||
import math
|
||||
import random
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
@ -713,3 +714,10 @@ def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def set_seed(seed: int):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
Loading…
Reference in New Issue
Block a user