FcF use unique resize strategy

This commit is contained in:
Qing 2022-09-04 16:00:42 +08:00
parent c5d7baec79
commit 2119a5f905
6 changed files with 105 additions and 18 deletions

View File

@ -18,6 +18,9 @@ export enum LDMSampler {
function HDSettingBlock() { function HDSettingBlock() {
const [hdSettings, setHDSettings] = useRecoilState(hdSettingsState) const [hdSettings, setHDSettings] = useRecoilState(hdSettingsState)
if (!hdSettings.enabled) {
return <></>
}
const onStrategyChange = (value: HDStrategy) => { const onStrategyChange = (value: HDStrategy) => {
setHDSettings({ hdStrategy: value }) setHDSettings({ hdStrategy: value })

View File

@ -30,17 +30,6 @@ function ModelSettingBlock() {
) => { ) => {
return ( return (
<div style={{ display: 'flex', gap: '12px' }}> <div style={{ display: 'flex', gap: '12px' }}>
{/* <Tooltip content={name}>
<a
className="model-desc-link"
href={paperUrl}
target="_blank"
rel="noreferrer noopener"
>
Paper
</a>
</Tooltip> */}
<Tooltip content={githubUrl}> <Tooltip content={githubUrl}>
<a <a
className="model-desc-link" className="model-desc-link"
@ -64,6 +53,17 @@ function ModelSettingBlock() {
</svg> </svg>
</a> </a>
</Tooltip> </Tooltip>
{/* <Tooltip content={name}>
<a
className="model-desc-link"
href={paperUrl}
target="_blank"
rel="noreferrer noopener"
>
Paper
</a>
</Tooltip> */}
</div> </div>
) )
} }
@ -123,6 +123,16 @@ function ModelSettingBlock() {
) )
} }
const renderFCFModelDesc = () => {
return (
<div>
FcF only support fixed size(512x512) image input. Lama Cleaner will take
care of resize and crop process, it still recommended applies to small
defects.
</div>
)
}
const renderOptionDesc = (): ReactNode => { const renderOptionDesc = (): ReactNode => {
switch (setting.model) { switch (setting.model) {
case AIModel.LAMA: case AIModel.LAMA:
@ -133,6 +143,8 @@ function ModelSettingBlock() {
return renderZITSModelDesc() return renderZITSModelDesc()
case AIModel.MAT: case AIModel.MAT:
return undefined return undefined
case AIModel.FCF:
return renderFCFModelDesc()
default: default:
return <></> return <></>
} }
@ -161,9 +173,15 @@ function ModelSettingBlock() {
case AIModel.MAT: case AIModel.MAT:
return renderModelDesc( return renderModelDesc(
'Mask-Aware Transformer for Large Hole Image Inpainting', 'Mask-Aware Transformer for Large Hole Image Inpainting',
'https://arxiv.org/pdf/2203.15270.pdf', 'https://arxiv.org/abs/2203.15270',
'https://github.com/fenglinglwb/MAT' 'https://github.com/fenglinglwb/MAT'
) )
case AIModel.FCF:
return renderModelDesc(
'Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand',
'https://arxiv.org/abs/2208.03382',
'https://github.com/SHI-Labs/FcF-Inpainting'
)
default: default:
return <></> return <></>
} }

View File

@ -8,6 +8,7 @@ export enum AIModel {
LDM = 'ldm', LDM = 'ldm',
ZITS = 'zits', ZITS = 'zits',
MAT = 'mat', MAT = 'mat',
FCF = 'fcf',
} }
export const fileState = atom<File | undefined>({ export const fileState = atom<File | undefined>({
@ -42,6 +43,7 @@ export interface HDSettings {
hdStrategyResizeLimit: number hdStrategyResizeLimit: number
hdStrategyCropTrigerSize: number hdStrategyCropTrigerSize: number
hdStrategyCropMargin: number hdStrategyCropMargin: number
enabled: boolean
} }
type ModelsHDSettings = { [key in AIModel]: HDSettings } type ModelsHDSettings = { [key in AIModel]: HDSettings }
@ -68,24 +70,35 @@ const defaultHDSettings: ModelsHDSettings = {
hdStrategyResizeLimit: 2048, hdStrategyResizeLimit: 2048,
hdStrategyCropTrigerSize: 2048, hdStrategyCropTrigerSize: 2048,
hdStrategyCropMargin: 128, hdStrategyCropMargin: 128,
enabled: true,
}, },
[AIModel.LDM]: { [AIModel.LDM]: {
hdStrategy: HDStrategy.CROP, hdStrategy: HDStrategy.CROP,
hdStrategyResizeLimit: 1080, hdStrategyResizeLimit: 1080,
hdStrategyCropTrigerSize: 1080, hdStrategyCropTrigerSize: 1080,
hdStrategyCropMargin: 128, hdStrategyCropMargin: 128,
enabled: true,
}, },
[AIModel.ZITS]: { [AIModel.ZITS]: {
hdStrategy: HDStrategy.CROP, hdStrategy: HDStrategy.CROP,
hdStrategyResizeLimit: 1024, hdStrategyResizeLimit: 1024,
hdStrategyCropTrigerSize: 1024, hdStrategyCropTrigerSize: 1024,
hdStrategyCropMargin: 128, hdStrategyCropMargin: 128,
enabled: true,
}, },
[AIModel.MAT]: { [AIModel.MAT]: {
hdStrategy: HDStrategy.CROP, hdStrategy: HDStrategy.CROP,
hdStrategyResizeLimit: 1024, hdStrategyResizeLimit: 1024,
hdStrategyCropTrigerSize: 512, hdStrategyCropTrigerSize: 512,
hdStrategyCropMargin: 128, hdStrategyCropMargin: 128,
enabled: true,
},
[AIModel.FCF]: {
hdStrategy: HDStrategy.CROP,
hdStrategyResizeLimit: 512,
hdStrategyCropTrigerSize: 512,
hdStrategyCropMargin: 128,
enabled: false,
}, },
} }

View File

@ -4,7 +4,6 @@ from typing import Optional
import cv2 import cv2
import torch import torch
from loguru import logger from loguru import logger
import numpy as np
from lama_cleaner.helper import boxes_from_mask, resize_max_size, pad_img_to_modulo from lama_cleaner.helper import boxes_from_mask, resize_max_size, pad_img_to_modulo
from lama_cleaner.schema import Config, HDStrategy from lama_cleaner.schema import Config, HDStrategy
@ -92,7 +91,6 @@ class InpaintModel:
inpaint_result = cv2.resize(inpaint_result, inpaint_result = cv2.resize(inpaint_result,
(origin_size[1], origin_size[0]), (origin_size[1], origin_size[0]),
interpolation=cv2.INTER_CUBIC) interpolation=cv2.INTER_CUBIC)
original_pixel_indices = mask < 127 original_pixel_indices = mask < 127
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices] inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
@ -101,7 +99,7 @@ class InpaintModel:
return inpaint_result return inpaint_result
def _run_box(self, image, mask, box, config: Config): def _crop_box(self, image, mask, box, config: Config):
""" """
Args: Args:
@ -110,7 +108,7 @@ class InpaintModel:
box: [left,top,right,bottom] box: [left,top,right,bottom]
Returns: Returns:
BGR IMAGE BGR IMAGE, (l, r, r, b)
""" """
box_h = box[3] - box[1] box_h = box[3] - box[1]
box_w = box[2] - box[0] box_w = box[2] - box[0]
@ -151,4 +149,19 @@ class InpaintModel:
logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}") logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}")
return crop_img, crop_mask, [l, t, r, b]
def _run_box(self, image, mask, box, config: Config):
"""
Args:
image: [H, W, C] RGB
mask: [H, W, 1]
box: [left,top,right,bottom]
Returns:
BGR IMAGE
"""
crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)
return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b] return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]

View File

@ -8,7 +8,7 @@ import torch.fft as fft
from lama_cleaner.schema import Config from lama_cleaner.schema import Config
from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img, boxes_from_mask, resize_max_size
from lama_cleaner.model.base import InpaintModel from lama_cleaner.model.base import InpaintModel
from torch import conv2d, nn from torch import conv2d, nn
import torch.nn.functional as F import torch.nn.functional as F
@ -1154,6 +1154,38 @@ class FcF(InpaintModel):
def is_downloaded() -> bool: def is_downloaded() -> bool:
return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL)) return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL))
@torch.no_grad()
def __call__(self, image, mask, config: Config):
"""
images: [H, W, C] RGB, not normalized
masks: [H, W]
return: BGR IMAGE
"""
boxes = boxes_from_mask(mask)
crop_result = []
config.hd_strategy_crop_margin = 128
for box in boxes:
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
origin_size = crop_image.shape[:2]
resize_image = resize_max_size(crop_image, size_limit=512)
resize_mask = resize_max_size(crop_mask, size_limit=512)
inpaint_result = self._pad_forward(resize_image, resize_mask, config)
# only paste masked area result
inpaint_result = cv2.resize(inpaint_result, (origin_size[1], origin_size[0]), interpolation=cv2.INTER_CUBIC)
original_pixel_indices = crop_mask < 127
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][original_pixel_indices]
crop_result.append((inpaint_result, crop_box))
inpaint_result = image[:, :, ::-1]
for crop_image, crop_box in crop_result:
x1, y1, x2, y2 = crop_box
inpaint_result[y1:y2, x1:x2, :] = crop_image
return inpaint_result
def forward(self, image, mask, config: Config): def forward(self, image, mask, config: Config):
"""Input images and output images have same size """Input images and output images have same size
images: [H, W, C] RGB images: [H, W, C] RGB

View File

@ -143,3 +143,11 @@ def test_fcf(strategy):
fx=2, fx=2,
fy=2 fy=2
) )
assert_equal(
model,
cfg,
f"fcf_{strategy.capitalize()}_result.png",
fx=3.8,
fy=2
)