FcF use unique resize strategy
This commit is contained in:
parent
c5d7baec79
commit
2119a5f905
@ -18,6 +18,9 @@ export enum LDMSampler {
|
||||
|
||||
function HDSettingBlock() {
|
||||
const [hdSettings, setHDSettings] = useRecoilState(hdSettingsState)
|
||||
if (!hdSettings.enabled) {
|
||||
return <></>
|
||||
}
|
||||
|
||||
const onStrategyChange = (value: HDStrategy) => {
|
||||
setHDSettings({ hdStrategy: value })
|
||||
|
@ -30,17 +30,6 @@ function ModelSettingBlock() {
|
||||
) => {
|
||||
return (
|
||||
<div style={{ display: 'flex', gap: '12px' }}>
|
||||
{/* <Tooltip content={name}>
|
||||
<a
|
||||
className="model-desc-link"
|
||||
href={paperUrl}
|
||||
target="_blank"
|
||||
rel="noreferrer noopener"
|
||||
>
|
||||
Paper
|
||||
</a>
|
||||
</Tooltip> */}
|
||||
|
||||
<Tooltip content={githubUrl}>
|
||||
<a
|
||||
className="model-desc-link"
|
||||
@ -64,6 +53,17 @@ function ModelSettingBlock() {
|
||||
</svg>
|
||||
</a>
|
||||
</Tooltip>
|
||||
|
||||
{/* <Tooltip content={name}>
|
||||
<a
|
||||
className="model-desc-link"
|
||||
href={paperUrl}
|
||||
target="_blank"
|
||||
rel="noreferrer noopener"
|
||||
>
|
||||
Paper
|
||||
</a>
|
||||
</Tooltip> */}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
@ -123,6 +123,16 @@ function ModelSettingBlock() {
|
||||
)
|
||||
}
|
||||
|
||||
const renderFCFModelDesc = () => {
|
||||
return (
|
||||
<div>
|
||||
FcF only support fixed size(512x512) image input. Lama Cleaner will take
|
||||
care of resize and crop process, it still recommended applies to small
|
||||
defects.
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
||||
const renderOptionDesc = (): ReactNode => {
|
||||
switch (setting.model) {
|
||||
case AIModel.LAMA:
|
||||
@ -133,6 +143,8 @@ function ModelSettingBlock() {
|
||||
return renderZITSModelDesc()
|
||||
case AIModel.MAT:
|
||||
return undefined
|
||||
case AIModel.FCF:
|
||||
return renderFCFModelDesc()
|
||||
default:
|
||||
return <></>
|
||||
}
|
||||
@ -161,9 +173,15 @@ function ModelSettingBlock() {
|
||||
case AIModel.MAT:
|
||||
return renderModelDesc(
|
||||
'Mask-Aware Transformer for Large Hole Image Inpainting',
|
||||
'https://arxiv.org/pdf/2203.15270.pdf',
|
||||
'https://arxiv.org/abs/2203.15270',
|
||||
'https://github.com/fenglinglwb/MAT'
|
||||
)
|
||||
case AIModel.FCF:
|
||||
return renderModelDesc(
|
||||
'Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand',
|
||||
'https://arxiv.org/abs/2208.03382',
|
||||
'https://github.com/SHI-Labs/FcF-Inpainting'
|
||||
)
|
||||
default:
|
||||
return <></>
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ export enum AIModel {
|
||||
LDM = 'ldm',
|
||||
ZITS = 'zits',
|
||||
MAT = 'mat',
|
||||
FCF = 'fcf',
|
||||
}
|
||||
|
||||
export const fileState = atom<File | undefined>({
|
||||
@ -42,6 +43,7 @@ export interface HDSettings {
|
||||
hdStrategyResizeLimit: number
|
||||
hdStrategyCropTrigerSize: number
|
||||
hdStrategyCropMargin: number
|
||||
enabled: boolean
|
||||
}
|
||||
|
||||
type ModelsHDSettings = { [key in AIModel]: HDSettings }
|
||||
@ -68,24 +70,35 @@ const defaultHDSettings: ModelsHDSettings = {
|
||||
hdStrategyResizeLimit: 2048,
|
||||
hdStrategyCropTrigerSize: 2048,
|
||||
hdStrategyCropMargin: 128,
|
||||
enabled: true,
|
||||
},
|
||||
[AIModel.LDM]: {
|
||||
hdStrategy: HDStrategy.CROP,
|
||||
hdStrategyResizeLimit: 1080,
|
||||
hdStrategyCropTrigerSize: 1080,
|
||||
hdStrategyCropMargin: 128,
|
||||
enabled: true,
|
||||
},
|
||||
[AIModel.ZITS]: {
|
||||
hdStrategy: HDStrategy.CROP,
|
||||
hdStrategyResizeLimit: 1024,
|
||||
hdStrategyCropTrigerSize: 1024,
|
||||
hdStrategyCropMargin: 128,
|
||||
enabled: true,
|
||||
},
|
||||
[AIModel.MAT]: {
|
||||
hdStrategy: HDStrategy.CROP,
|
||||
hdStrategyResizeLimit: 1024,
|
||||
hdStrategyCropTrigerSize: 512,
|
||||
hdStrategyCropMargin: 128,
|
||||
enabled: true,
|
||||
},
|
||||
[AIModel.FCF]: {
|
||||
hdStrategy: HDStrategy.CROP,
|
||||
hdStrategyResizeLimit: 512,
|
||||
hdStrategyCropTrigerSize: 512,
|
||||
hdStrategyCropMargin: 128,
|
||||
enabled: false,
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -4,7 +4,6 @@ from typing import Optional
|
||||
import cv2
|
||||
import torch
|
||||
from loguru import logger
|
||||
import numpy as np
|
||||
|
||||
from lama_cleaner.helper import boxes_from_mask, resize_max_size, pad_img_to_modulo
|
||||
from lama_cleaner.schema import Config, HDStrategy
|
||||
@ -92,7 +91,6 @@ class InpaintModel:
|
||||
inpaint_result = cv2.resize(inpaint_result,
|
||||
(origin_size[1], origin_size[0]),
|
||||
interpolation=cv2.INTER_CUBIC)
|
||||
|
||||
original_pixel_indices = mask < 127
|
||||
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
||||
|
||||
@ -101,7 +99,7 @@ class InpaintModel:
|
||||
|
||||
return inpaint_result
|
||||
|
||||
def _run_box(self, image, mask, box, config: Config):
|
||||
def _crop_box(self, image, mask, box, config: Config):
|
||||
"""
|
||||
|
||||
Args:
|
||||
@ -110,7 +108,7 @@ class InpaintModel:
|
||||
box: [left,top,right,bottom]
|
||||
|
||||
Returns:
|
||||
BGR IMAGE
|
||||
BGR IMAGE, (l, r, r, b)
|
||||
"""
|
||||
box_h = box[3] - box[1]
|
||||
box_w = box[2] - box[0]
|
||||
@ -151,4 +149,19 @@ class InpaintModel:
|
||||
|
||||
logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}")
|
||||
|
||||
return crop_img, crop_mask, [l, t, r, b]
|
||||
|
||||
def _run_box(self, image, mask, box, config: Config):
|
||||
"""
|
||||
|
||||
Args:
|
||||
image: [H, W, C] RGB
|
||||
mask: [H, W, 1]
|
||||
box: [left,top,right,bottom]
|
||||
|
||||
Returns:
|
||||
BGR IMAGE
|
||||
"""
|
||||
crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config)
|
||||
|
||||
return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b]
|
||||
|
@ -8,7 +8,7 @@ import torch.fft as fft
|
||||
|
||||
from lama_cleaner.schema import Config
|
||||
|
||||
from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img
|
||||
from lama_cleaner.helper import load_model, get_cache_path_by_url, norm_img, boxes_from_mask, resize_max_size
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from torch import conv2d, nn
|
||||
import torch.nn.functional as F
|
||||
@ -1154,6 +1154,38 @@ class FcF(InpaintModel):
|
||||
def is_downloaded() -> bool:
|
||||
return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL))
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, image, mask, config: Config):
|
||||
"""
|
||||
images: [H, W, C] RGB, not normalized
|
||||
masks: [H, W]
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
boxes = boxes_from_mask(mask)
|
||||
crop_result = []
|
||||
config.hd_strategy_crop_margin = 128
|
||||
for box in boxes:
|
||||
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
|
||||
origin_size = crop_image.shape[:2]
|
||||
resize_image = resize_max_size(crop_image, size_limit=512)
|
||||
resize_mask = resize_max_size(crop_mask, size_limit=512)
|
||||
inpaint_result = self._pad_forward(resize_image, resize_mask, config)
|
||||
|
||||
# only paste masked area result
|
||||
inpaint_result = cv2.resize(inpaint_result, (origin_size[1], origin_size[0]), interpolation=cv2.INTER_CUBIC)
|
||||
|
||||
original_pixel_indices = crop_mask < 127
|
||||
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][original_pixel_indices]
|
||||
|
||||
crop_result.append((inpaint_result, crop_box))
|
||||
|
||||
inpaint_result = image[:, :, ::-1]
|
||||
for crop_image, crop_box in crop_result:
|
||||
x1, y1, x2, y2 = crop_box
|
||||
inpaint_result[y1:y2, x1:x2, :] = crop_image
|
||||
|
||||
return inpaint_result
|
||||
|
||||
def forward(self, image, mask, config: Config):
|
||||
"""Input images and output images have same size
|
||||
images: [H, W, C] RGB
|
||||
|
@ -143,3 +143,11 @@ def test_fcf(strategy):
|
||||
fx=2,
|
||||
fy=2
|
||||
)
|
||||
|
||||
assert_equal(
|
||||
model,
|
||||
cfg,
|
||||
f"fcf_{strategy.capitalize()}_result.png",
|
||||
fx=3.8,
|
||||
fy=2
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user