ldm add plms sampler
This commit is contained in:
parent
55197f2209
commit
35b92ba9de
@ -16,6 +16,7 @@ export default async function inpaint(
|
||||
fd.append('mask', mask)
|
||||
|
||||
fd.append('ldmSteps', settings.ldmSteps.toString())
|
||||
fd.append('ldmSampler', settings.ldmSampler.toString())
|
||||
fd.append('hdStrategy', settings.hdStrategy)
|
||||
fd.append('hdStrategyCropMargin', settings.hdStrategyCropMargin.toString())
|
||||
fd.append(
|
||||
|
@ -11,6 +11,11 @@ export enum HDStrategy {
|
||||
CROP = 'Crop',
|
||||
}
|
||||
|
||||
export enum LDMSampler {
|
||||
ddim = 'ddim',
|
||||
plms = 'plms',
|
||||
}
|
||||
|
||||
function HDSettingBlock() {
|
||||
const [setting, setSettingState] = useRecoilState(settingState)
|
||||
|
||||
|
@ -2,6 +2,7 @@ import React, { ReactNode } from 'react'
|
||||
import { useRecoilState } from 'recoil'
|
||||
import { settingState } from '../../store/Atoms'
|
||||
import Selector from '../shared/Selector'
|
||||
import { LDMSampler } from './HDSettingBlock'
|
||||
import NumberInputSetting from './NumberInputSetting'
|
||||
import SettingBlock from './SettingBlock'
|
||||
|
||||
@ -19,6 +20,12 @@ function ModelSettingBlock() {
|
||||
})
|
||||
}
|
||||
|
||||
const onLDMSamplerChange = (value: LDMSampler) => {
|
||||
setSettingState(old => {
|
||||
return { ...old, ldmSampler: value }
|
||||
})
|
||||
}
|
||||
|
||||
const renderModelDesc = (
|
||||
name: string,
|
||||
paperUrl: string,
|
||||
@ -65,6 +72,19 @@ function ModelSettingBlock() {
|
||||
})
|
||||
}}
|
||||
/>
|
||||
|
||||
<SettingBlock
|
||||
className="sub-setting-block"
|
||||
title="Sampler"
|
||||
input={
|
||||
<Selector
|
||||
width={80}
|
||||
value={setting.ldmSampler as string}
|
||||
options={Object.values(LDMSampler)}
|
||||
onChange={val => onLDMSamplerChange(val as LDMSampler)}
|
||||
/>
|
||||
}
|
||||
/>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
|
@ -56,7 +56,7 @@ export default function ShortcutsModal() {
|
||||
/>
|
||||
<ShortCut content="Undo Inpainting" keys={[CmdOrCtrl, 'Z']} />
|
||||
<ShortCut content="Pan" keys={['Space & Drag']} />
|
||||
<ShortCut content="View Original Image" keys={['Hold Tag']} />
|
||||
<ShortCut content="View Original Image" keys={['Hold Tab']} />
|
||||
<ShortCut content="Reset Zoom/Pan" keys={['Esc']} />
|
||||
<ShortCut content="Cancel Mask Drawing" keys={['Esc']} />
|
||||
<ShortCut content="Run Inpainting Manually" keys={['Shift', 'R']} />
|
||||
|
@ -2,8 +2,9 @@
|
||||
all: unset;
|
||||
flex: 1 0 auto;
|
||||
border-radius: 0.5rem;
|
||||
padding: 0.4rem 0.8rem;
|
||||
padding: 0 0.8rem;
|
||||
outline: 1px solid var(--border-color);
|
||||
height: 36px;
|
||||
|
||||
&:focus-visible {
|
||||
outline: 1px solid var(--yellow-accent);
|
||||
|
@ -1,5 +1,5 @@
|
||||
import { atom } from 'recoil'
|
||||
import { HDStrategy } from '../components/Settings/HDSettingBlock'
|
||||
import { HDStrategy, LDMSampler } from '../components/Settings/HDSettingBlock'
|
||||
import { AIModel } from '../components/Settings/ModelSettingBlock'
|
||||
import { ToastState } from '../components/shared/Toast'
|
||||
|
||||
@ -43,6 +43,7 @@ export interface Settings {
|
||||
|
||||
// For LDM
|
||||
ldmSteps: number
|
||||
ldmSampler: LDMSampler
|
||||
}
|
||||
|
||||
export const settingStateDefault = {
|
||||
@ -50,6 +51,7 @@ export const settingStateDefault = {
|
||||
runInpaintingManually: false,
|
||||
model: AIModel.LAMA,
|
||||
ldmSteps: 50,
|
||||
ldmSampler: LDMSampler.plms,
|
||||
hdStrategy: HDStrategy.RESIZE,
|
||||
hdStrategyResizeLimit: 2048,
|
||||
hdStrategyCropTrigerSize: 2048,
|
||||
|
193
lama_cleaner/model/ddim_sampler.py
Normal file
193
lama_cleaner/model/ddim_sampler.py
Normal file
@ -0,0 +1,193 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from lama_cleaner.model.utils import make_ddim_timesteps, make_ddim_sampling_parameters, noise_like
|
||||
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule="linear"):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
||||
):
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
# array([1])
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod # torch.Size([1000])
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), "alphas have to be defined for each timestep"
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer("betas", to_torch(self.model.betas))
|
||||
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_one_minus_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recipm1_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
||||
self.register_buffer("ddim_alphas", ddim_alphas)
|
||||
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
||||
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self, steps, conditioning, batch_size, shape):
|
||||
self.make_schedule(ddim_num_steps=steps, ddim_eta=0, verbose=False)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
|
||||
# samples: 1,3,128,128
|
||||
return self.ddim_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
quantize_denoised=False,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=0,
|
||||
temperature=1.0,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
ddim_use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device=device, dtype=cond.dtype)
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
)
|
||||
|
||||
time_range = (
|
||||
reversed(range(0, timesteps))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
logger.info(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
outs = self.p_sample_ddim(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
)
|
||||
img, _ = outs
|
||||
|
||||
return img
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised: # 没用
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0: # 没用
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
@ -5,17 +5,15 @@ import torch
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from lama_cleaner.schema import Config
|
||||
from lama_cleaner.model.ddim_sampler import DDIMSampler
|
||||
from lama_cleaner.model.plms_sampler import PLMSSampler
|
||||
from lama_cleaner.schema import Config, LDMSampler
|
||||
|
||||
torch.manual_seed(42)
|
||||
import torch.nn as nn
|
||||
from tqdm import tqdm
|
||||
from lama_cleaner.helper import download_model, norm_img, get_cache_path_by_url
|
||||
from lama_cleaner.model.utils import (
|
||||
make_beta_schedule,
|
||||
make_ddim_timesteps,
|
||||
make_ddim_sampling_parameters,
|
||||
noise_like,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
@ -94,7 +92,7 @@ class DDPM(nn.Module):
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.num_timesteps
|
||||
alphas_cumprod.shape[0] == self.num_timesteps
|
||||
), "alphas have to be defined for each timestep"
|
||||
|
||||
to_torch = lambda x: torch.tensor(x, dtype=torch.float32).to(self.device)
|
||||
@ -120,7 +118,7 @@ class DDPM(nn.Module):
|
||||
|
||||
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
||||
posterior_variance = (1 - self.v_posterior) * betas * (
|
||||
1.0 - alphas_cumprod_prev
|
||||
1.0 - alphas_cumprod_prev
|
||||
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
||||
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
||||
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
||||
@ -142,16 +140,16 @@ class DDPM(nn.Module):
|
||||
|
||||
if self.parameterization == "eps":
|
||||
lvlb_weights = self.betas ** 2 / (
|
||||
2
|
||||
* self.posterior_variance
|
||||
* to_torch(alphas)
|
||||
* (1 - self.alphas_cumprod)
|
||||
2
|
||||
* self.posterior_variance
|
||||
* to_torch(alphas)
|
||||
* (1 - self.alphas_cumprod)
|
||||
)
|
||||
elif self.parameterization == "x0":
|
||||
lvlb_weights = (
|
||||
0.5
|
||||
* np.sqrt(torch.Tensor(alphas_cumprod))
|
||||
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
||||
0.5
|
||||
* np.sqrt(torch.Tensor(alphas_cumprod))
|
||||
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError("mu not supported")
|
||||
@ -221,192 +219,6 @@ class LatentDiffusion(DDPM):
|
||||
return x_recon
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule="linear"):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
||||
):
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
# array([1])
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod # torch.Size([1000])
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), "alphas have to be defined for each timestep"
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer("betas", to_torch(self.model.betas))
|
||||
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_one_minus_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recipm1_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
||||
self.register_buffer("ddim_alphas", ddim_alphas)
|
||||
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
||||
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self, steps, conditioning, batch_size, shape):
|
||||
self.make_schedule(ddim_num_steps=steps, ddim_eta=0, verbose=False)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
|
||||
# samples: 1,3,128,128
|
||||
return self.ddim_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
quantize_denoised=False,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=0,
|
||||
temperature=1.0,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
ddim_use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device=device, dtype=cond.dtype)
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
)
|
||||
|
||||
time_range = (
|
||||
reversed(range(0, timesteps))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
logger.info(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
outs = self.p_sample_ddim(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
)
|
||||
img, _ = outs
|
||||
|
||||
return img
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised: # 没用
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0: # 没用
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
|
||||
def load_jit_model(url, device):
|
||||
model_path = download_model(url)
|
||||
logger.info(f"Load LDM model from: {model_path}")
|
||||
@ -432,8 +244,7 @@ class LDM(InpaintModel):
|
||||
self.cond_stage_model_decode = self.cond_stage_model_decode.half()
|
||||
self.cond_stage_model_encode = self.cond_stage_model_encode.half()
|
||||
|
||||
model = LatentDiffusion(self.diffusion_model, device)
|
||||
self.sampler = DDIMSampler(model)
|
||||
self.model = LatentDiffusion(self.diffusion_model, device)
|
||||
|
||||
@staticmethod
|
||||
def is_downloaded() -> bool:
|
||||
@ -454,6 +265,13 @@ class LDM(InpaintModel):
|
||||
# image [1,3,512,512] float32
|
||||
# mask: [1,1,512,512] float32
|
||||
# masked_image: [1,3,512,512] float32
|
||||
if config.ldm_sampler == LDMSampler.ddim:
|
||||
sampler = DDIMSampler(self.model)
|
||||
elif config.ldm_sampler == LDMSampler.plms:
|
||||
sampler = PLMSSampler(self.model)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
steps = config.ldm_steps
|
||||
image = norm_img(image)
|
||||
mask = norm_img(mask)
|
||||
@ -465,7 +283,6 @@ class LDM(InpaintModel):
|
||||
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
||||
masked_image = (1 - mask) * image
|
||||
|
||||
image = self._norm(image)
|
||||
mask = self._norm(mask)
|
||||
masked_image = self._norm(masked_image)
|
||||
|
||||
@ -476,7 +293,7 @@ class LDM(InpaintModel):
|
||||
c = torch.cat((c, cc), dim=1) # 1,4,128,128
|
||||
|
||||
shape = (c.shape[1] - 1,) + c.shape[2:]
|
||||
samples_ddim = self.sampler.sample(
|
||||
samples_ddim = sampler.sample(
|
||||
steps=steps, conditioning=c, batch_size=c.shape[0], shape=shape
|
||||
)
|
||||
torch.cuda.empty_cache()
|
||||
|
225
lama_cleaner/model/plms_sampler.py
Normal file
225
lama_cleaner/model/plms_sampler.py
Normal file
@ -0,0 +1,225 @@
|
||||
# From: https://github.com/CompVis/latent-diffusion/blob/main/ldm/models/diffusion/plms.py
|
||||
import torch
|
||||
import numpy as np
|
||||
from lama_cleaner.model.utils import make_ddim_timesteps, make_ddim_sampling_parameters, noise_like
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError('ddim_eta must be 0 for PLMS')
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta, verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
steps,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=False,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
return samples
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, ):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
time_range = list(reversed(range(0, timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps, t_next=ts_next)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
|
||||
return img
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
@ -9,8 +9,14 @@ class HDStrategy(str, Enum):
|
||||
CROP = 'Crop'
|
||||
|
||||
|
||||
class LDMSampler(str, Enum):
|
||||
ddim = 'ddim'
|
||||
plms = 'plms'
|
||||
|
||||
|
||||
class Config(BaseModel):
|
||||
ldm_steps: int
|
||||
ldm_sampler: str
|
||||
hd_strategy: str
|
||||
hd_strategy_crop_margin: int
|
||||
hd_strategy_crop_trigger_size: int
|
||||
|
@ -93,6 +93,7 @@ def process():
|
||||
|
||||
config = Config(
|
||||
ldm_steps=form["ldmSteps"],
|
||||
ldm_sampler=form["ldmSampler"],
|
||||
hd_strategy=form["hdStrategy"],
|
||||
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
|
||||
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
|
||||
|
Loading…
Reference in New Issue
Block a user