add MAT model
This commit is contained in:
parent
a5e840765e
commit
6d2b24ed6b
@ -26,6 +26,7 @@
|
||||
1. [LaMa](https://github.com/saic-mdal/lama)
|
||||
1. [LDM](https://github.com/CompVis/latent-diffusion)
|
||||
1. [ZITS](https://github.com/DQiaole/ZITS_inpainting)
|
||||
1. [MAT](https://github.com/fenglinglwb/MAT)
|
||||
- Support CPU & GPU
|
||||
- Various high-resolution image processing [strategy](#high-resolution-strategy)
|
||||
- Run as a desktop APP
|
||||
@ -36,7 +37,7 @@
|
||||
| ---------------------- | --------------------------------------------- | --------------------------------------------------- |
|
||||
| Remove unwanted things | ![unwant_object2](./assets/unwant_object.jpg) | ![unwant_object2](./assets/unwant_object_clean.jpg) |
|
||||
| Remove unwanted person | ![unwant_person](./assets/unwant_person.jpg) | ![unwant_person](./assets/unwant_person_clean.jpg) |
|
||||
| Remove Text | ![text](./assets/unwant_text.jpg) | ![watermark_clean](./assets/unwant_text_clean.jpg) |
|
||||
| Remove Text | ![text](./assets/unwant_text.jpg) | ![text](./assets/unwant_text_clean.jpg) |
|
||||
| Remove watermark | ![watermark](./assets/watermark.jpg) | ![watermark_clean](./assets/watermark_cleanup.jpg) |
|
||||
| Fix old photo | ![oldphoto](./assets/old_photo.jpg) | ![oldphoto_clean](./assets/old_photo_clean.jpg) |
|
||||
|
||||
@ -69,6 +70,7 @@ Available arguments:
|
||||
| LaMa | :+1: Generalizes well on high resolutions(~2k)<br/> | |
|
||||
| LDM | :+1: Possiblablity to get better and more detail result <br/> :+1: The balance of time and quality can be achieved by adjusting `steps` <br/> :neutral_face: Slower than GAN model<br/> :neutral_face: Need more GPU memory | `Steps`: You can get better result with large steps, but it will be more time-consuming <br/> `Sampler`: ddim or [plms](https://arxiv.org/abs/2202.09778). In general plms can get [better results](https://github.com/Sanster/lama-cleaner/releases/tag/0.13.0) with fewer steps |
|
||||
| ZITS | :+1: Better holistic structures compared with previous methods <br/> :neutral_face: Wireframe module is **very** slow on CPU | `Wireframe`: Enable edge and line detect |
|
||||
| MAT | TODO | |
|
||||
|
||||
### LaMa vs LDM
|
||||
|
||||
|
@ -131,6 +131,8 @@ function ModelSettingBlock() {
|
||||
return renderLDMModelDesc()
|
||||
case AIModel.ZITS:
|
||||
return renderZITSModelDesc()
|
||||
case AIModel.MAT:
|
||||
return undefined
|
||||
default:
|
||||
return <></>
|
||||
}
|
||||
@ -156,6 +158,12 @@ function ModelSettingBlock() {
|
||||
'https://arxiv.org/abs/2203.00867',
|
||||
'https://github.com/DQiaole/ZITS_inpainting'
|
||||
)
|
||||
case AIModel.MAT:
|
||||
return renderModelDesc(
|
||||
'Mask-Aware Transformer for Large Hole Image Inpainting',
|
||||
'https://arxiv.org/pdf/2203.15270.pdf',
|
||||
'https://github.com/fenglinglwb/MAT'
|
||||
)
|
||||
default:
|
||||
return <></>
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ export enum AIModel {
|
||||
LAMA = 'lama',
|
||||
LDM = 'ldm',
|
||||
ZITS = 'zits',
|
||||
MAT = 'mat',
|
||||
}
|
||||
|
||||
export const fileState = atom<File | undefined>({
|
||||
@ -80,6 +81,12 @@ const defaultHDSettings: ModelsHDSettings = {
|
||||
hdStrategyCropTrigerSize: 1024,
|
||||
hdStrategyCropMargin: 128,
|
||||
},
|
||||
[AIModel.MAT]: {
|
||||
hdStrategy: HDStrategy.CROP,
|
||||
hdStrategyResizeLimit: 1024,
|
||||
hdStrategyCropTrigerSize: 512,
|
||||
hdStrategyCropMargin: 128,
|
||||
},
|
||||
}
|
||||
|
||||
export const settingStateDefault: Settings = {
|
||||
|
@ -53,6 +53,26 @@ def load_jit_model(url_or_path, device):
|
||||
return model
|
||||
|
||||
|
||||
def load_model(model: torch.nn.Module, url_or_path, device):
|
||||
if os.path.exists(url_or_path):
|
||||
model_path = url_or_path
|
||||
else:
|
||||
model_path = download_model(url_or_path)
|
||||
|
||||
try:
|
||||
state_dict = torch.load(model_path, map_location='cpu')
|
||||
model.load_state_dict(state_dict, strict=True)
|
||||
model.to(device)
|
||||
logger.info(f"Load model from: {model_path}")
|
||||
except:
|
||||
logger.error(
|
||||
f"Failed to load {model_path}, delete model and restart lama-cleaner"
|
||||
)
|
||||
exit(-1)
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
|
||||
data = cv2.imencode(
|
||||
f".{ext}",
|
||||
|
2064
lama_cleaner/model/mat.py
Normal file
2064
lama_cleaner/model/mat.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,12 +1,14 @@
|
||||
from lama_cleaner.model.lama import LaMa
|
||||
from lama_cleaner.model.ldm import LDM
|
||||
from lama_cleaner.model.mat import MAT
|
||||
from lama_cleaner.model.zits import ZITS
|
||||
from lama_cleaner.schema import Config
|
||||
|
||||
models = {
|
||||
'lama': LaMa,
|
||||
'ldm': LDM,
|
||||
'zits': ZITS
|
||||
'zits': ZITS,
|
||||
'mat': MAT
|
||||
}
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", default="127.0.0.1")
|
||||
parser.add_argument("--port", default=8080, type=int)
|
||||
parser.add_argument("--model", default="lama", choices=["lama", "ldm", "zits"])
|
||||
parser.add_argument("--model", default="lama", choices=["lama", "ldm", "zits", "mat"])
|
||||
parser.add_argument("--device", default="cuda", type=str, choices=["cuda", "cpu"])
|
||||
parser.add_argument("--gui", action="store_true", help="Launch as desktop app")
|
||||
parser.add_argument(
|
||||
|
@ -11,13 +11,19 @@ from lama_cleaner.schema import Config, HDStrategy, LDMSampler
|
||||
current_dir = Path(__file__).parent.absolute().resolve()
|
||||
|
||||
|
||||
def get_data(fx=1):
|
||||
def get_data(fx=1, fy=1.0):
|
||||
img = cv2.imread(str(current_dir / "image.png"))
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
||||
mask = cv2.imread(str(current_dir / "mask.png"), cv2.IMREAD_GRAYSCALE)
|
||||
|
||||
# img = cv2.imread("/Users/qing/code/github/MAT/test_sets/Places/images/test1.jpg")
|
||||
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
# mask = cv2.imread("/Users/qing/code/github/MAT/test_sets/Places/masks/mask1.png", cv2.IMREAD_GRAYSCALE)
|
||||
# mask = 255 - mask
|
||||
|
||||
if fx != 1:
|
||||
img = cv2.resize(img, None, fx=fx, fy=1)
|
||||
mask = cv2.resize(mask, None, fx=fx, fy=1)
|
||||
img = cv2.resize(img, None, fx=fx, fy=fy)
|
||||
mask = cv2.resize(mask, None, fx=fx, fy=fy)
|
||||
return img, mask
|
||||
|
||||
|
||||
@ -34,8 +40,8 @@ def get_config(strategy, **kwargs):
|
||||
return Config(**data)
|
||||
|
||||
|
||||
def assert_equal(model, config, gt_name, fx=1):
|
||||
img, mask = get_data(fx=fx)
|
||||
def assert_equal(model, config, gt_name, fx=1, fy=1):
|
||||
img, mask = get_data(fx=fx, fy=fy)
|
||||
res = model(img, mask, config)
|
||||
cv2.imwrite(
|
||||
str(current_dir / gt_name),
|
||||
@ -111,6 +117,20 @@ def test_zits(strategy, zits_wireframe):
|
||||
assert_equal(
|
||||
model,
|
||||
cfg,
|
||||
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
||||
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
||||
fx=fx,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"strategy", [HDStrategy.ORIGINAL]
|
||||
)
|
||||
def test_mat(strategy):
|
||||
model = ModelManager(name="mat", device="cpu")
|
||||
cfg = get_config(strategy)
|
||||
|
||||
assert_equal(
|
||||
model,
|
||||
cfg,
|
||||
f"mat_{strategy.capitalize()}_result.png",
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user