add MAT model
This commit is contained in:
parent
a5e840765e
commit
6d2b24ed6b
@ -26,6 +26,7 @@
|
|||||||
1. [LaMa](https://github.com/saic-mdal/lama)
|
1. [LaMa](https://github.com/saic-mdal/lama)
|
||||||
1. [LDM](https://github.com/CompVis/latent-diffusion)
|
1. [LDM](https://github.com/CompVis/latent-diffusion)
|
||||||
1. [ZITS](https://github.com/DQiaole/ZITS_inpainting)
|
1. [ZITS](https://github.com/DQiaole/ZITS_inpainting)
|
||||||
|
1. [MAT](https://github.com/fenglinglwb/MAT)
|
||||||
- Support CPU & GPU
|
- Support CPU & GPU
|
||||||
- Various high-resolution image processing [strategy](#high-resolution-strategy)
|
- Various high-resolution image processing [strategy](#high-resolution-strategy)
|
||||||
- Run as a desktop APP
|
- Run as a desktop APP
|
||||||
@ -36,7 +37,7 @@
|
|||||||
| ---------------------- | --------------------------------------------- | --------------------------------------------------- |
|
| ---------------------- | --------------------------------------------- | --------------------------------------------------- |
|
||||||
| Remove unwanted things | ![unwant_object2](./assets/unwant_object.jpg) | ![unwant_object2](./assets/unwant_object_clean.jpg) |
|
| Remove unwanted things | ![unwant_object2](./assets/unwant_object.jpg) | ![unwant_object2](./assets/unwant_object_clean.jpg) |
|
||||||
| Remove unwanted person | ![unwant_person](./assets/unwant_person.jpg) | ![unwant_person](./assets/unwant_person_clean.jpg) |
|
| Remove unwanted person | ![unwant_person](./assets/unwant_person.jpg) | ![unwant_person](./assets/unwant_person_clean.jpg) |
|
||||||
| Remove Text | ![text](./assets/unwant_text.jpg) | ![watermark_clean](./assets/unwant_text_clean.jpg) |
|
| Remove Text | ![text](./assets/unwant_text.jpg) | ![text](./assets/unwant_text_clean.jpg) |
|
||||||
| Remove watermark | ![watermark](./assets/watermark.jpg) | ![watermark_clean](./assets/watermark_cleanup.jpg) |
|
| Remove watermark | ![watermark](./assets/watermark.jpg) | ![watermark_clean](./assets/watermark_cleanup.jpg) |
|
||||||
| Fix old photo | ![oldphoto](./assets/old_photo.jpg) | ![oldphoto_clean](./assets/old_photo_clean.jpg) |
|
| Fix old photo | ![oldphoto](./assets/old_photo.jpg) | ![oldphoto_clean](./assets/old_photo_clean.jpg) |
|
||||||
|
|
||||||
@ -69,6 +70,7 @@ Available arguments:
|
|||||||
| LaMa | :+1: Generalizes well on high resolutions(~2k)<br/> | |
|
| LaMa | :+1: Generalizes well on high resolutions(~2k)<br/> | |
|
||||||
| LDM | :+1: Possiblablity to get better and more detail result <br/> :+1: The balance of time and quality can be achieved by adjusting `steps` <br/> :neutral_face: Slower than GAN model<br/> :neutral_face: Need more GPU memory | `Steps`: You can get better result with large steps, but it will be more time-consuming <br/> `Sampler`: ddim or [plms](https://arxiv.org/abs/2202.09778). In general plms can get [better results](https://github.com/Sanster/lama-cleaner/releases/tag/0.13.0) with fewer steps |
|
| LDM | :+1: Possiblablity to get better and more detail result <br/> :+1: The balance of time and quality can be achieved by adjusting `steps` <br/> :neutral_face: Slower than GAN model<br/> :neutral_face: Need more GPU memory | `Steps`: You can get better result with large steps, but it will be more time-consuming <br/> `Sampler`: ddim or [plms](https://arxiv.org/abs/2202.09778). In general plms can get [better results](https://github.com/Sanster/lama-cleaner/releases/tag/0.13.0) with fewer steps |
|
||||||
| ZITS | :+1: Better holistic structures compared with previous methods <br/> :neutral_face: Wireframe module is **very** slow on CPU | `Wireframe`: Enable edge and line detect |
|
| ZITS | :+1: Better holistic structures compared with previous methods <br/> :neutral_face: Wireframe module is **very** slow on CPU | `Wireframe`: Enable edge and line detect |
|
||||||
|
| MAT | TODO | |
|
||||||
|
|
||||||
### LaMa vs LDM
|
### LaMa vs LDM
|
||||||
|
|
||||||
|
@ -131,6 +131,8 @@ function ModelSettingBlock() {
|
|||||||
return renderLDMModelDesc()
|
return renderLDMModelDesc()
|
||||||
case AIModel.ZITS:
|
case AIModel.ZITS:
|
||||||
return renderZITSModelDesc()
|
return renderZITSModelDesc()
|
||||||
|
case AIModel.MAT:
|
||||||
|
return undefined
|
||||||
default:
|
default:
|
||||||
return <></>
|
return <></>
|
||||||
}
|
}
|
||||||
@ -156,6 +158,12 @@ function ModelSettingBlock() {
|
|||||||
'https://arxiv.org/abs/2203.00867',
|
'https://arxiv.org/abs/2203.00867',
|
||||||
'https://github.com/DQiaole/ZITS_inpainting'
|
'https://github.com/DQiaole/ZITS_inpainting'
|
||||||
)
|
)
|
||||||
|
case AIModel.MAT:
|
||||||
|
return renderModelDesc(
|
||||||
|
'Mask-Aware Transformer for Large Hole Image Inpainting',
|
||||||
|
'https://arxiv.org/pdf/2203.15270.pdf',
|
||||||
|
'https://github.com/fenglinglwb/MAT'
|
||||||
|
)
|
||||||
default:
|
default:
|
||||||
return <></>
|
return <></>
|
||||||
}
|
}
|
||||||
|
@ -7,6 +7,7 @@ export enum AIModel {
|
|||||||
LAMA = 'lama',
|
LAMA = 'lama',
|
||||||
LDM = 'ldm',
|
LDM = 'ldm',
|
||||||
ZITS = 'zits',
|
ZITS = 'zits',
|
||||||
|
MAT = 'mat',
|
||||||
}
|
}
|
||||||
|
|
||||||
export const fileState = atom<File | undefined>({
|
export const fileState = atom<File | undefined>({
|
||||||
@ -80,6 +81,12 @@ const defaultHDSettings: ModelsHDSettings = {
|
|||||||
hdStrategyCropTrigerSize: 1024,
|
hdStrategyCropTrigerSize: 1024,
|
||||||
hdStrategyCropMargin: 128,
|
hdStrategyCropMargin: 128,
|
||||||
},
|
},
|
||||||
|
[AIModel.MAT]: {
|
||||||
|
hdStrategy: HDStrategy.CROP,
|
||||||
|
hdStrategyResizeLimit: 1024,
|
||||||
|
hdStrategyCropTrigerSize: 512,
|
||||||
|
hdStrategyCropMargin: 128,
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
export const settingStateDefault: Settings = {
|
export const settingStateDefault: Settings = {
|
||||||
|
@ -53,6 +53,26 @@ def load_jit_model(url_or_path, device):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(model: torch.nn.Module, url_or_path, device):
|
||||||
|
if os.path.exists(url_or_path):
|
||||||
|
model_path = url_or_path
|
||||||
|
else:
|
||||||
|
model_path = download_model(url_or_path)
|
||||||
|
|
||||||
|
try:
|
||||||
|
state_dict = torch.load(model_path, map_location='cpu')
|
||||||
|
model.load_state_dict(state_dict, strict=True)
|
||||||
|
model.to(device)
|
||||||
|
logger.info(f"Load model from: {model_path}")
|
||||||
|
except:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to load {model_path}, delete model and restart lama-cleaner"
|
||||||
|
)
|
||||||
|
exit(-1)
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
|
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
|
||||||
data = cv2.imencode(
|
data = cv2.imencode(
|
||||||
f".{ext}",
|
f".{ext}",
|
||||||
|
2064
lama_cleaner/model/mat.py
Normal file
2064
lama_cleaner/model/mat.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,12 +1,14 @@
|
|||||||
from lama_cleaner.model.lama import LaMa
|
from lama_cleaner.model.lama import LaMa
|
||||||
from lama_cleaner.model.ldm import LDM
|
from lama_cleaner.model.ldm import LDM
|
||||||
|
from lama_cleaner.model.mat import MAT
|
||||||
from lama_cleaner.model.zits import ZITS
|
from lama_cleaner.model.zits import ZITS
|
||||||
from lama_cleaner.schema import Config
|
from lama_cleaner.schema import Config
|
||||||
|
|
||||||
models = {
|
models = {
|
||||||
'lama': LaMa,
|
'lama': LaMa,
|
||||||
'ldm': LDM,
|
'ldm': LDM,
|
||||||
'zits': ZITS
|
'zits': ZITS,
|
||||||
|
'mat': MAT
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@ def parse_args():
|
|||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--host", default="127.0.0.1")
|
parser.add_argument("--host", default="127.0.0.1")
|
||||||
parser.add_argument("--port", default=8080, type=int)
|
parser.add_argument("--port", default=8080, type=int)
|
||||||
parser.add_argument("--model", default="lama", choices=["lama", "ldm", "zits"])
|
parser.add_argument("--model", default="lama", choices=["lama", "ldm", "zits", "mat"])
|
||||||
parser.add_argument("--device", default="cuda", type=str, choices=["cuda", "cpu"])
|
parser.add_argument("--device", default="cuda", type=str, choices=["cuda", "cpu"])
|
||||||
parser.add_argument("--gui", action="store_true", help="Launch as desktop app")
|
parser.add_argument("--gui", action="store_true", help="Launch as desktop app")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@ -11,13 +11,19 @@ from lama_cleaner.schema import Config, HDStrategy, LDMSampler
|
|||||||
current_dir = Path(__file__).parent.absolute().resolve()
|
current_dir = Path(__file__).parent.absolute().resolve()
|
||||||
|
|
||||||
|
|
||||||
def get_data(fx=1):
|
def get_data(fx=1, fy=1.0):
|
||||||
img = cv2.imread(str(current_dir / "image.png"))
|
img = cv2.imread(str(current_dir / "image.png"))
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
||||||
mask = cv2.imread(str(current_dir / "mask.png"), cv2.IMREAD_GRAYSCALE)
|
mask = cv2.imread(str(current_dir / "mask.png"), cv2.IMREAD_GRAYSCALE)
|
||||||
|
|
||||||
|
# img = cv2.imread("/Users/qing/code/github/MAT/test_sets/Places/images/test1.jpg")
|
||||||
|
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||||
|
# mask = cv2.imread("/Users/qing/code/github/MAT/test_sets/Places/masks/mask1.png", cv2.IMREAD_GRAYSCALE)
|
||||||
|
# mask = 255 - mask
|
||||||
|
|
||||||
if fx != 1:
|
if fx != 1:
|
||||||
img = cv2.resize(img, None, fx=fx, fy=1)
|
img = cv2.resize(img, None, fx=fx, fy=fy)
|
||||||
mask = cv2.resize(mask, None, fx=fx, fy=1)
|
mask = cv2.resize(mask, None, fx=fx, fy=fy)
|
||||||
return img, mask
|
return img, mask
|
||||||
|
|
||||||
|
|
||||||
@ -34,8 +40,8 @@ def get_config(strategy, **kwargs):
|
|||||||
return Config(**data)
|
return Config(**data)
|
||||||
|
|
||||||
|
|
||||||
def assert_equal(model, config, gt_name, fx=1):
|
def assert_equal(model, config, gt_name, fx=1, fy=1):
|
||||||
img, mask = get_data(fx=fx)
|
img, mask = get_data(fx=fx, fy=fy)
|
||||||
res = model(img, mask, config)
|
res = model(img, mask, config)
|
||||||
cv2.imwrite(
|
cv2.imwrite(
|
||||||
str(current_dir / gt_name),
|
str(current_dir / gt_name),
|
||||||
@ -111,6 +117,20 @@ def test_zits(strategy, zits_wireframe):
|
|||||||
assert_equal(
|
assert_equal(
|
||||||
model,
|
model,
|
||||||
cfg,
|
cfg,
|
||||||
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
||||||
fx=fx,
|
fx=fx,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"strategy", [HDStrategy.ORIGINAL]
|
||||||
|
)
|
||||||
|
def test_mat(strategy):
|
||||||
|
model = ModelManager(name="mat", device="cpu")
|
||||||
|
cfg = get_config(strategy)
|
||||||
|
|
||||||
|
assert_equal(
|
||||||
|
model,
|
||||||
|
cfg,
|
||||||
|
f"mat_{strategy.capitalize()}_result.png",
|
||||||
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user