add Segment Anything
This commit is contained in:
parent
ed36744339
commit
a6aec566d9
@ -11,7 +11,7 @@ MPS_SUPPORT_MODELS = [
|
|||||||
"realisticVision1.4",
|
"realisticVision1.4",
|
||||||
"sd2",
|
"sd2",
|
||||||
"paint_by_example",
|
"paint_by_example",
|
||||||
"controlnet"
|
"controlnet",
|
||||||
]
|
]
|
||||||
|
|
||||||
DEFAULT_MODEL = "lama"
|
DEFAULT_MODEL = "lama"
|
||||||
@ -105,7 +105,9 @@ class RealESRGANModelName(str, Enum):
|
|||||||
|
|
||||||
RealESRGANModelNameList = [e.value for e in RealESRGANModelName]
|
RealESRGANModelNameList = [e.value for e in RealESRGANModelName]
|
||||||
|
|
||||||
INTERACTIVE_SEG_HELP = "Enable interactive segmentation. Always run on CPU"
|
INTERACTIVE_SEG_HELP = "Enable interactive segmentation using Segment Anything."
|
||||||
|
AVAILABLE_INTERACTIVE_SEG_MODELS = ["vit_b", "vit_l", "vit_h"]
|
||||||
|
AVAILABLE_INTERACTIVE_SEG_DEVICES = ["cuda", "cpu", "mps"]
|
||||||
REMOVE_BG_HELP = "Enable remove background. Always run on CPU"
|
REMOVE_BG_HELP = "Enable remove background. Always run on CPU"
|
||||||
REALESRGAN_HELP = "Enable realesrgan super resolution"
|
REALESRGAN_HELP = "Enable realesrgan super resolution"
|
||||||
REALESRGAN_AVAILABLE_DEVICES = ["cpu", "cuda", "mps"]
|
REALESRGAN_AVAILABLE_DEVICES = ["cpu", "cuda", "mps"]
|
||||||
|
@ -82,6 +82,16 @@ def parse_args():
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
help=INTERACTIVE_SEG_HELP,
|
help=INTERACTIVE_SEG_HELP,
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--interactive-seg-model",
|
||||||
|
default="vit_l",
|
||||||
|
help=AVAILABLE_INTERACTIVE_SEG_MODELS,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--interactive-seg-device",
|
||||||
|
default="cpu",
|
||||||
|
help=AVAILABLE_INTERACTIVE_SEG_DEVICES,
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--enable-remove-bg",
|
"--enable-remove-bg",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
@ -230,12 +240,4 @@ def parse_args():
|
|||||||
if not output_dir.is_dir():
|
if not output_dir.is_dir():
|
||||||
parser.error(f"invalid --output-dir: {output_dir} is not a directory")
|
parser.error(f"invalid --output-dir: {output_dir} is not a directory")
|
||||||
|
|
||||||
if args.enable_gfpgan:
|
|
||||||
if args.enable_realesrgan:
|
|
||||||
logger.info("Use realesrgan as GFPGAN background upscaler")
|
|
||||||
else:
|
|
||||||
logger.info(
|
|
||||||
f"GFPGAN no background upscaler, use --enable-realesrgan to enable it"
|
|
||||||
)
|
|
||||||
|
|
||||||
return args
|
return args
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from .interactive_seg import InteractiveSeg, Click
|
from .interactive_seg import InteractiveSeg
|
||||||
from .remove_bg import RemoveBG
|
from .remove_bg import RemoveBG
|
||||||
from .realesrgan import RealESRGANUpscaler
|
from .realesrgan import RealESRGANUpscaler
|
||||||
from .gfpgan_plugin import GFPGANPlugin
|
from .gfpgan_plugin import GFPGANPlugin
|
||||||
|
@ -1,264 +1,75 @@
|
|||||||
import json
|
import json
|
||||||
import os
|
|
||||||
from typing import Tuple, List
|
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
from lama_cleaner.helper import (
|
from lama_cleaner.helper import download_model
|
||||||
load_jit_model,
|
|
||||||
load_img,
|
|
||||||
)
|
|
||||||
from lama_cleaner.plugins.base_plugin import BasePlugin
|
from lama_cleaner.plugins.base_plugin import BasePlugin
|
||||||
|
from lama_cleaner.plugins.segment_anything import SamPredictor, sam_model_registry
|
||||||
|
|
||||||
|
# 从小到大
|
||||||
class Click(BaseModel):
|
SEGMENT_ANYTHING_MODELS = {
|
||||||
# [y, x]
|
"vit_b": {
|
||||||
coords: Tuple[float, float]
|
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
|
||||||
is_positive: bool
|
"md5": "01ec64d29a2fca3f0661936605ae66f8",
|
||||||
indx: int
|
},
|
||||||
|
"vit_l": {
|
||||||
@property
|
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
|
||||||
def coords_and_indx(self):
|
"md5": "0b3195507c641ddb6910d2bb5adee89c",
|
||||||
return (*self.coords, self.indx)
|
},
|
||||||
|
"vit_h": {
|
||||||
def scale(self, x_ratio: float, y_ratio: float) -> "Click":
|
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
|
||||||
return Click(
|
"md5": "4b8939a88964f0f4ff5f5b2642c598a6",
|
||||||
coords=(self.coords[0] * x_ratio, self.coords[1] * y_ratio),
|
},
|
||||||
is_positive=self.is_positive,
|
}
|
||||||
indx=self.indx,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class ResizeTrans:
|
|
||||||
def __init__(self, size=480):
|
|
||||||
super().__init__()
|
|
||||||
self.crop_height = size
|
|
||||||
self.crop_width = size
|
|
||||||
|
|
||||||
def transform(self, image_nd, clicks_lists):
|
|
||||||
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
|
|
||||||
image_height, image_width = image_nd.shape[2:4]
|
|
||||||
self.image_height = image_height
|
|
||||||
self.image_width = image_width
|
|
||||||
image_nd_r = F.interpolate(
|
|
||||||
image_nd,
|
|
||||||
(self.crop_height, self.crop_width),
|
|
||||||
mode="bilinear",
|
|
||||||
align_corners=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
y_ratio = self.crop_height / image_height
|
|
||||||
x_ratio = self.crop_width / image_width
|
|
||||||
|
|
||||||
clicks_lists_resized = []
|
|
||||||
for clicks_list in clicks_lists:
|
|
||||||
clicks_list_resized = [
|
|
||||||
click.scale(y_ratio, x_ratio) for click in clicks_list
|
|
||||||
]
|
|
||||||
clicks_lists_resized.append(clicks_list_resized)
|
|
||||||
|
|
||||||
return image_nd_r, clicks_lists_resized
|
|
||||||
|
|
||||||
def inv_transform(self, prob_map):
|
|
||||||
new_prob_map = F.interpolate(
|
|
||||||
prob_map,
|
|
||||||
(self.image_height, self.image_width),
|
|
||||||
mode="bilinear",
|
|
||||||
align_corners=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
return new_prob_map
|
|
||||||
|
|
||||||
|
|
||||||
class ISPredictor(object):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model,
|
|
||||||
device,
|
|
||||||
open_kernel_size: int,
|
|
||||||
dilate_kernel_size: int,
|
|
||||||
net_clicks_limit=None,
|
|
||||||
zoom_in=None,
|
|
||||||
infer_size=384,
|
|
||||||
):
|
|
||||||
self.model = model
|
|
||||||
self.open_kernel_size = open_kernel_size
|
|
||||||
self.dilate_kernel_size = dilate_kernel_size
|
|
||||||
self.net_clicks_limit = net_clicks_limit
|
|
||||||
self.device = device
|
|
||||||
self.zoom_in = zoom_in
|
|
||||||
self.infer_size = infer_size
|
|
||||||
|
|
||||||
# self.transforms = [zoom_in] if zoom_in is not None else []
|
|
||||||
|
|
||||||
def __call__(self, input_image: torch.Tensor, clicks: List[Click], prev_mask):
|
|
||||||
"""
|
|
||||||
|
|
||||||
Args:
|
|
||||||
input_image: [1, 3, H, W] [0~1]
|
|
||||||
clicks: List[Click]
|
|
||||||
prev_mask: [1, 1, H, W]
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
|
|
||||||
"""
|
|
||||||
transforms = [ResizeTrans(self.infer_size)]
|
|
||||||
input_image = torch.cat((input_image, prev_mask), dim=1)
|
|
||||||
|
|
||||||
# image_nd resized to infer_size
|
|
||||||
for t in transforms:
|
|
||||||
image_nd, clicks_lists = t.transform(input_image, [clicks])
|
|
||||||
|
|
||||||
# image_nd.shape = [1, 4, 256, 256]
|
|
||||||
# points_nd.sha[e = [1, 2, 3]
|
|
||||||
# clicks_lists[0][0] Click 类
|
|
||||||
points_nd = self.get_points_nd(clicks_lists)
|
|
||||||
pred_logits = self.model(image_nd, points_nd)
|
|
||||||
pred = torch.sigmoid(pred_logits)
|
|
||||||
pred = self.post_process(pred)
|
|
||||||
|
|
||||||
prediction = F.interpolate(
|
|
||||||
pred, mode="bilinear", align_corners=True, size=image_nd.size()[2:]
|
|
||||||
)
|
|
||||||
|
|
||||||
for t in reversed(transforms):
|
|
||||||
prediction = t.inv_transform(prediction)
|
|
||||||
|
|
||||||
# if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
|
|
||||||
# return self.get_prediction(clicker)
|
|
||||||
|
|
||||||
return prediction.cpu().numpy()[0, 0]
|
|
||||||
|
|
||||||
def post_process(self, pred: torch.Tensor) -> torch.Tensor:
|
|
||||||
pred_mask = pred.cpu().numpy()[0][0]
|
|
||||||
# morph_open to remove small noise
|
|
||||||
kernel_size = self.open_kernel_size
|
|
||||||
kernel = cv2.getStructuringElement(
|
|
||||||
cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)
|
|
||||||
)
|
|
||||||
pred_mask = cv2.morphologyEx(pred_mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
|
||||||
|
|
||||||
# Why dilate: make region slightly larger to avoid missing some pixels, this generally works better
|
|
||||||
dilate_kernel_size = self.dilate_kernel_size
|
|
||||||
if dilate_kernel_size > 1:
|
|
||||||
kernel = cv2.getStructuringElement(
|
|
||||||
cv2.MORPH_DILATE, (dilate_kernel_size, dilate_kernel_size)
|
|
||||||
)
|
|
||||||
pred_mask = cv2.dilate(pred_mask, kernel, 1)
|
|
||||||
return torch.from_numpy(pred_mask).unsqueeze(0).unsqueeze(0)
|
|
||||||
|
|
||||||
def get_points_nd(self, clicks_lists):
|
|
||||||
total_clicks = []
|
|
||||||
num_pos_clicks = [
|
|
||||||
sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists
|
|
||||||
]
|
|
||||||
num_neg_clicks = [
|
|
||||||
len(clicks_list) - num_pos
|
|
||||||
for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)
|
|
||||||
]
|
|
||||||
num_max_points = max(num_pos_clicks + num_neg_clicks)
|
|
||||||
if self.net_clicks_limit is not None:
|
|
||||||
num_max_points = min(self.net_clicks_limit, num_max_points)
|
|
||||||
num_max_points = max(1, num_max_points)
|
|
||||||
|
|
||||||
for clicks_list in clicks_lists:
|
|
||||||
clicks_list = clicks_list[: self.net_clicks_limit]
|
|
||||||
pos_clicks = [
|
|
||||||
click.coords_and_indx for click in clicks_list if click.is_positive
|
|
||||||
]
|
|
||||||
pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [
|
|
||||||
(-1, -1, -1)
|
|
||||||
]
|
|
||||||
|
|
||||||
neg_clicks = [
|
|
||||||
click.coords_and_indx for click in clicks_list if not click.is_positive
|
|
||||||
]
|
|
||||||
neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [
|
|
||||||
(-1, -1, -1)
|
|
||||||
]
|
|
||||||
total_clicks.append(pos_clicks + neg_clicks)
|
|
||||||
|
|
||||||
return torch.tensor(total_clicks, device=self.device)
|
|
||||||
|
|
||||||
|
|
||||||
INTERACTIVE_SEG_MODEL_URL = os.environ.get(
|
|
||||||
"INTERACTIVE_SEG_MODEL_URL",
|
|
||||||
"https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt",
|
|
||||||
)
|
|
||||||
INTERACTIVE_SEG_MODEL_MD5 = os.environ.get(
|
|
||||||
"INTERACTIVE_SEG_MODEL_MD5", "8ca44b6e02bca78f62ec26a3c32376cf"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class InteractiveSeg(BasePlugin):
|
class InteractiveSeg(BasePlugin):
|
||||||
name = "InteractiveSeg"
|
name = "InteractiveSeg"
|
||||||
|
|
||||||
def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3):
|
def __init__(self, model_name, device):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
device = torch.device("cpu")
|
model_path = download_model(
|
||||||
model = load_jit_model(
|
SEGMENT_ANYTHING_MODELS[model_name]["url"],
|
||||||
INTERACTIVE_SEG_MODEL_URL, device, INTERACTIVE_SEG_MODEL_MD5
|
SEGMENT_ANYTHING_MODELS[model_name]["md5"],
|
||||||
).eval()
|
|
||||||
self.predictor = ISPredictor(
|
|
||||||
model,
|
|
||||||
device,
|
|
||||||
infer_size=infer_size,
|
|
||||||
open_kernel_size=open_kernel_size,
|
|
||||||
dilate_kernel_size=dilate_kernel_size,
|
|
||||||
)
|
)
|
||||||
|
logger.info(f"SegmentAnything model path: {model_path}")
|
||||||
|
self.predictor = SamPredictor(
|
||||||
|
sam_model_registry[model_name](checkpoint=model_path).to(device)
|
||||||
|
)
|
||||||
|
self.prev_img_md5 = None
|
||||||
|
|
||||||
def __call__(self, rgb_np_img, files, form):
|
def __call__(self, rgb_np_img, files, form):
|
||||||
image = rgb_np_img
|
clicks = json.loads(form["clicks"])
|
||||||
if "mask" in files:
|
return self.forward(rgb_np_img, clicks, form["img_md5"])
|
||||||
mask, _ = load_img(files["mask"].read(), gray=True)
|
|
||||||
else:
|
|
||||||
mask = None
|
|
||||||
|
|
||||||
_clicks = json.loads(form["clicks"])
|
def forward(self, rgb_np_img, clicks, img_md5):
|
||||||
clicks = []
|
input_point = []
|
||||||
for i, click in enumerate(_clicks):
|
input_label = []
|
||||||
clicks.append(
|
for click in clicks:
|
||||||
Click(coords=(click[1], click[0]), indx=i, is_positive=click[2] == 1)
|
x = click[0]
|
||||||
)
|
y = click[1]
|
||||||
|
input_point.append([x, y])
|
||||||
|
input_label.append(click[2])
|
||||||
|
|
||||||
new_mask = self.forward(image, clicks=clicks, prev_mask=mask)
|
if img_md5 and img_md5 != self.prev_img_md5:
|
||||||
return new_mask
|
self.prev_img_md5 = img_md5
|
||||||
|
self.predictor.set_image(rgb_np_img)
|
||||||
|
|
||||||
def forward(self, image, clicks, prev_mask=None):
|
masks, scores, _ = self.predictor.predict(
|
||||||
"""
|
point_coords=np.array(input_point),
|
||||||
|
point_labels=np.array(input_label),
|
||||||
Args:
|
multimask_output=False,
|
||||||
image: [H,W,C] RGB
|
)
|
||||||
clicks:
|
mask = masks[0].astype(np.uint8) * 255
|
||||||
|
# TODO: how to set kernel size?
|
||||||
Returns:
|
kernel_size = 9
|
||||||
|
mask = cv2.dilate(
|
||||||
"""
|
mask, np.ones((kernel_size, kernel_size), np.uint8), iterations=1
|
||||||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
)
|
||||||
image = torch.from_numpy((image / 255).transpose(2, 0, 1)).unsqueeze(0).float()
|
# fronted brush color "ffcc00bb"
|
||||||
if prev_mask is None:
|
res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
||||||
mask = torch.zeros_like(image[:, :1, :, :])
|
res_mask[mask == 255] = [255, 203, 0, int(255 * 0.73)]
|
||||||
else:
|
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
|
||||||
logger.info("InteractiveSeg run with prev_mask")
|
return res_mask
|
||||||
mask = torch.from_numpy(prev_mask / 255).unsqueeze(0).unsqueeze(0).float()
|
|
||||||
|
|
||||||
pred_probs = self.predictor(image, clicks, mask)
|
|
||||||
pred_mask = pred_probs > 0.5
|
|
||||||
pred_mask = (pred_mask * 255).astype(np.uint8)
|
|
||||||
|
|
||||||
# Find largest contour
|
|
||||||
# pred_mask = only_keep_largest_contour(pred_mask)
|
|
||||||
# To simplify frontend process, add mask brush color here
|
|
||||||
fg = pred_mask == 255
|
|
||||||
bg = pred_mask != 255
|
|
||||||
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_GRAY2BGRA)
|
|
||||||
# frontend brush color "ffcc00bb"
|
|
||||||
pred_mask[bg] = 0
|
|
||||||
pred_mask[fg] = [255, 203, 0, int(255 * 0.73)]
|
|
||||||
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_BGRA2RGBA)
|
|
||||||
return pred_mask
|
|
||||||
|
14
lama_cleaner/plugins/segment_anything/__init__.py
Normal file
14
lama_cleaner/plugins/segment_anything/__init__.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from .build_sam import (
|
||||||
|
build_sam,
|
||||||
|
build_sam_vit_h,
|
||||||
|
build_sam_vit_l,
|
||||||
|
build_sam_vit_b,
|
||||||
|
sam_model_registry,
|
||||||
|
)
|
||||||
|
from .predictor import SamPredictor
|
107
lama_cleaner/plugins/segment_anything/build_sam.py
Normal file
107
lama_cleaner/plugins/segment_anything/build_sam.py
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_h(checkpoint=None):
|
||||||
|
return _build_sam(
|
||||||
|
encoder_embed_dim=1280,
|
||||||
|
encoder_depth=32,
|
||||||
|
encoder_num_heads=16,
|
||||||
|
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
build_sam = build_sam_vit_h
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_l(checkpoint=None):
|
||||||
|
return _build_sam(
|
||||||
|
encoder_embed_dim=1024,
|
||||||
|
encoder_depth=24,
|
||||||
|
encoder_num_heads=16,
|
||||||
|
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_b(checkpoint=None):
|
||||||
|
return _build_sam(
|
||||||
|
encoder_embed_dim=768,
|
||||||
|
encoder_depth=12,
|
||||||
|
encoder_num_heads=12,
|
||||||
|
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
sam_model_registry = {
|
||||||
|
"default": build_sam,
|
||||||
|
"vit_h": build_sam,
|
||||||
|
"vit_l": build_sam_vit_l,
|
||||||
|
"vit_b": build_sam_vit_b,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def _build_sam(
|
||||||
|
encoder_embed_dim,
|
||||||
|
encoder_depth,
|
||||||
|
encoder_num_heads,
|
||||||
|
encoder_global_attn_indexes,
|
||||||
|
checkpoint=None,
|
||||||
|
):
|
||||||
|
prompt_embed_dim = 256
|
||||||
|
image_size = 1024
|
||||||
|
vit_patch_size = 16
|
||||||
|
image_embedding_size = image_size // vit_patch_size
|
||||||
|
sam = Sam(
|
||||||
|
image_encoder=ImageEncoderViT(
|
||||||
|
depth=encoder_depth,
|
||||||
|
embed_dim=encoder_embed_dim,
|
||||||
|
img_size=image_size,
|
||||||
|
mlp_ratio=4,
|
||||||
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||||
|
num_heads=encoder_num_heads,
|
||||||
|
patch_size=vit_patch_size,
|
||||||
|
qkv_bias=True,
|
||||||
|
use_rel_pos=True,
|
||||||
|
global_attn_indexes=encoder_global_attn_indexes,
|
||||||
|
window_size=14,
|
||||||
|
out_chans=prompt_embed_dim,
|
||||||
|
),
|
||||||
|
prompt_encoder=PromptEncoder(
|
||||||
|
embed_dim=prompt_embed_dim,
|
||||||
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||||
|
input_image_size=(image_size, image_size),
|
||||||
|
mask_in_chans=16,
|
||||||
|
),
|
||||||
|
mask_decoder=MaskDecoder(
|
||||||
|
num_multimask_outputs=3,
|
||||||
|
transformer=TwoWayTransformer(
|
||||||
|
depth=2,
|
||||||
|
embedding_dim=prompt_embed_dim,
|
||||||
|
mlp_dim=2048,
|
||||||
|
num_heads=8,
|
||||||
|
),
|
||||||
|
transformer_dim=prompt_embed_dim,
|
||||||
|
iou_head_depth=3,
|
||||||
|
iou_head_hidden_dim=256,
|
||||||
|
),
|
||||||
|
pixel_mean=[123.675, 116.28, 103.53],
|
||||||
|
pixel_std=[58.395, 57.12, 57.375],
|
||||||
|
)
|
||||||
|
sam.eval()
|
||||||
|
if checkpoint is not None:
|
||||||
|
with open(checkpoint, "rb") as f:
|
||||||
|
state_dict = torch.load(f)
|
||||||
|
sam.load_state_dict(state_dict)
|
||||||
|
return sam
|
11
lama_cleaner/plugins/segment_anything/modeling/__init__.py
Normal file
11
lama_cleaner/plugins/segment_anything/modeling/__init__.py
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from .sam import Sam
|
||||||
|
from .image_encoder import ImageEncoderViT
|
||||||
|
from .mask_decoder import MaskDecoder
|
||||||
|
from .prompt_encoder import PromptEncoder
|
||||||
|
from .transformer import TwoWayTransformer
|
43
lama_cleaner/plugins/segment_anything/modeling/common.py
Normal file
43
lama_cleaner/plugins/segment_anything/modeling/common.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from typing import Type
|
||||||
|
|
||||||
|
|
||||||
|
class MLPBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedding_dim: int,
|
||||||
|
mlp_dim: int,
|
||||||
|
act: Type[nn.Module] = nn.GELU,
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||||
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||||
|
self.act = act()
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.lin2(self.act(self.lin1(x)))
|
||||||
|
|
||||||
|
|
||||||
|
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
||||||
|
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
||||||
|
class LayerNorm2d(nn.Module):
|
||||||
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||||
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
u = x.mean(1, keepdim=True)
|
||||||
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||||
|
x = (x - u) / torch.sqrt(s + self.eps)
|
||||||
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||||
|
return x
|
395
lama_cleaner/plugins/segment_anything/modeling/image_encoder.py
Normal file
395
lama_cleaner/plugins/segment_anything/modeling/image_encoder.py
Normal file
@ -0,0 +1,395 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from typing import Optional, Tuple, Type
|
||||||
|
|
||||||
|
from .common import LayerNorm2d, MLPBlock
|
||||||
|
|
||||||
|
|
||||||
|
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
||||||
|
class ImageEncoderViT(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
img_size: int = 1024,
|
||||||
|
patch_size: int = 16,
|
||||||
|
in_chans: int = 3,
|
||||||
|
embed_dim: int = 768,
|
||||||
|
depth: int = 12,
|
||||||
|
num_heads: int = 12,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
out_chans: int = 256,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||||||
|
use_abs_pos: bool = True,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
window_size: int = 0,
|
||||||
|
global_attn_indexes: Tuple[int, ...] = (),
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
img_size (int): Input image size.
|
||||||
|
patch_size (int): Patch size.
|
||||||
|
in_chans (int): Number of input image channels.
|
||||||
|
embed_dim (int): Patch embedding dimension.
|
||||||
|
depth (int): Depth of ViT.
|
||||||
|
num_heads (int): Number of attention heads in each ViT block.
|
||||||
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
norm_layer (nn.Module): Normalization layer.
|
||||||
|
act_layer (nn.Module): Activation layer.
|
||||||
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
||||||
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
window_size (int): Window size for window attention blocks.
|
||||||
|
global_attn_indexes (list): Indexes for blocks using global attention.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.img_size = img_size
|
||||||
|
|
||||||
|
self.patch_embed = PatchEmbed(
|
||||||
|
kernel_size=(patch_size, patch_size),
|
||||||
|
stride=(patch_size, patch_size),
|
||||||
|
in_chans=in_chans,
|
||||||
|
embed_dim=embed_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pos_embed: Optional[nn.Parameter] = None
|
||||||
|
if use_abs_pos:
|
||||||
|
# Initialize absolute positional embedding with pretrain image size.
|
||||||
|
self.pos_embed = nn.Parameter(
|
||||||
|
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.blocks = nn.ModuleList()
|
||||||
|
for i in range(depth):
|
||||||
|
block = Block(
|
||||||
|
dim=embed_dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
mlp_ratio=mlp_ratio,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
norm_layer=norm_layer,
|
||||||
|
act_layer=act_layer,
|
||||||
|
use_rel_pos=use_rel_pos,
|
||||||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||||||
|
window_size=window_size if i not in global_attn_indexes else 0,
|
||||||
|
input_size=(img_size // patch_size, img_size // patch_size),
|
||||||
|
)
|
||||||
|
self.blocks.append(block)
|
||||||
|
|
||||||
|
self.neck = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
embed_dim,
|
||||||
|
out_chans,
|
||||||
|
kernel_size=1,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
|
LayerNorm2d(out_chans),
|
||||||
|
nn.Conv2d(
|
||||||
|
out_chans,
|
||||||
|
out_chans,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
|
LayerNorm2d(out_chans),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.patch_embed(x)
|
||||||
|
if self.pos_embed is not None:
|
||||||
|
x = x + self.pos_embed
|
||||||
|
|
||||||
|
for blk in self.blocks:
|
||||||
|
x = blk(x)
|
||||||
|
|
||||||
|
x = self.neck(x.permute(0, 3, 1, 2))
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
window_size: int = 0,
|
||||||
|
input_size: Optional[Tuple[int, int]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
num_heads (int): Number of attention heads in each ViT block.
|
||||||
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
norm_layer (nn.Module): Normalization layer.
|
||||||
|
act_layer (nn.Module): Activation layer.
|
||||||
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
window_size (int): Window size for window attention blocks. If it equals 0, then
|
||||||
|
use global attention.
|
||||||
|
input_size (int or None): Input resolution for calculating the relative positional
|
||||||
|
parameter size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.norm1 = norm_layer(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
use_rel_pos=use_rel_pos,
|
||||||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||||||
|
input_size=input_size if window_size == 0 else (window_size, window_size),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm2 = norm_layer(dim)
|
||||||
|
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
||||||
|
|
||||||
|
self.window_size = window_size
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
shortcut = x
|
||||||
|
x = self.norm1(x)
|
||||||
|
# Window partition
|
||||||
|
if self.window_size > 0:
|
||||||
|
H, W = x.shape[1], x.shape[2]
|
||||||
|
x, pad_hw = window_partition(x, self.window_size)
|
||||||
|
|
||||||
|
x = self.attn(x)
|
||||||
|
# Reverse window partition
|
||||||
|
if self.window_size > 0:
|
||||||
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
||||||
|
|
||||||
|
x = shortcut + x
|
||||||
|
x = x + self.mlp(self.norm2(x))
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
"""Multi-head Attention block with relative position embeddings."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_heads: int = 8,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
input_size: Optional[Tuple[int, int]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
||||||
|
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
input_size (int or None): Input resolution for calculating the relative positional
|
||||||
|
parameter size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = dim // num_heads
|
||||||
|
self.scale = head_dim**-0.5
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
|
||||||
|
self.use_rel_pos = use_rel_pos
|
||||||
|
if self.use_rel_pos:
|
||||||
|
assert (
|
||||||
|
input_size is not None
|
||||||
|
), "Input size must be provided if using relative positional encoding."
|
||||||
|
# initialize relative positional embeddings
|
||||||
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||||
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
B, H, W, _ = x.shape
|
||||||
|
# qkv with shape (3, B, nHead, H * W, C)
|
||||||
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
# q, k, v with shape (B * nHead, H * W, C)
|
||||||
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
||||||
|
|
||||||
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||||
|
|
||||||
|
if self.use_rel_pos:
|
||||||
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
||||||
|
|
||||||
|
attn = attn.softmax(dim=-1)
|
||||||
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
||||||
|
x = self.proj(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||||
|
"""
|
||||||
|
Partition into non-overlapping windows with padding if needed.
|
||||||
|
Args:
|
||||||
|
x (tensor): input tokens with [B, H, W, C].
|
||||||
|
window_size (int): window size.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||||
|
(Hp, Wp): padded height and width before partition
|
||||||
|
"""
|
||||||
|
B, H, W, C = x.shape
|
||||||
|
|
||||||
|
pad_h = (window_size - H % window_size) % window_size
|
||||||
|
pad_w = (window_size - W % window_size) % window_size
|
||||||
|
if pad_h > 0 or pad_w > 0:
|
||||||
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||||
|
Hp, Wp = H + pad_h, W + pad_w
|
||||||
|
|
||||||
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
return windows, (Hp, Wp)
|
||||||
|
|
||||||
|
|
||||||
|
def window_unpartition(
|
||||||
|
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Window unpartition into original sequences and removing padding.
|
||||||
|
Args:
|
||||||
|
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||||
|
window_size (int): window size.
|
||||||
|
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||||
|
hw (Tuple): original height and width (H, W) before padding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: unpartitioned sequences with [B, H, W, C].
|
||||||
|
"""
|
||||||
|
Hp, Wp = pad_hw
|
||||||
|
H, W = hw
|
||||||
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||||
|
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||||
|
|
||||||
|
if Hp > H or Wp > W:
|
||||||
|
x = x[:, :H, :W, :].contiguous()
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Get relative positional embeddings according to the relative positions of
|
||||||
|
query and key sizes.
|
||||||
|
Args:
|
||||||
|
q_size (int): size of query q.
|
||||||
|
k_size (int): size of key k.
|
||||||
|
rel_pos (Tensor): relative position embeddings (L, C).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Extracted positional embeddings according to relative positions.
|
||||||
|
"""
|
||||||
|
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||||||
|
# Interpolate rel pos if needed.
|
||||||
|
if rel_pos.shape[0] != max_rel_dist:
|
||||||
|
# Interpolate rel pos.
|
||||||
|
rel_pos_resized = F.interpolate(
|
||||||
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||||
|
size=max_rel_dist,
|
||||||
|
mode="linear",
|
||||||
|
)
|
||||||
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||||
|
else:
|
||||||
|
rel_pos_resized = rel_pos
|
||||||
|
|
||||||
|
# Scale the coords with short length if shapes for q and k are different.
|
||||||
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||||||
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||||||
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||||||
|
|
||||||
|
return rel_pos_resized[relative_coords.long()]
|
||||||
|
|
||||||
|
|
||||||
|
def add_decomposed_rel_pos(
|
||||||
|
attn: torch.Tensor,
|
||||||
|
q: torch.Tensor,
|
||||||
|
rel_pos_h: torch.Tensor,
|
||||||
|
rel_pos_w: torch.Tensor,
|
||||||
|
q_size: Tuple[int, int],
|
||||||
|
k_size: Tuple[int, int],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
||||||
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
||||||
|
Args:
|
||||||
|
attn (Tensor): attention map.
|
||||||
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||||
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
||||||
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
||||||
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
||||||
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
attn (Tensor): attention map with added relative positional embeddings.
|
||||||
|
"""
|
||||||
|
q_h, q_w = q_size
|
||||||
|
k_h, k_w = k_size
|
||||||
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
||||||
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
||||||
|
|
||||||
|
B, _, dim = q.shape
|
||||||
|
r_q = q.reshape(B, q_h, q_w, dim)
|
||||||
|
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
||||||
|
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
||||||
|
|
||||||
|
attn = (
|
||||||
|
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
||||||
|
).view(B, q_h * q_w, k_h * k_w)
|
||||||
|
|
||||||
|
return attn
|
||||||
|
|
||||||
|
|
||||||
|
class PatchEmbed(nn.Module):
|
||||||
|
"""
|
||||||
|
Image to Patch Embedding.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
kernel_size: Tuple[int, int] = (16, 16),
|
||||||
|
stride: Tuple[int, int] = (16, 16),
|
||||||
|
padding: Tuple[int, int] = (0, 0),
|
||||||
|
in_chans: int = 3,
|
||||||
|
embed_dim: int = 768,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
kernel_size (Tuple): kernel size of the projection layer.
|
||||||
|
stride (Tuple): stride of the projection layer.
|
||||||
|
padding (Tuple): padding size of the projection layer.
|
||||||
|
in_chans (int): Number of input image channels.
|
||||||
|
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.proj = nn.Conv2d(
|
||||||
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.proj(x)
|
||||||
|
# B C H W -> B H W C
|
||||||
|
x = x.permute(0, 2, 3, 1)
|
||||||
|
return x
|
176
lama_cleaner/plugins/segment_anything/modeling/mask_decoder.py
Normal file
176
lama_cleaner/plugins/segment_anything/modeling/mask_decoder.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from typing import List, Tuple, Type
|
||||||
|
|
||||||
|
from .common import LayerNorm2d
|
||||||
|
|
||||||
|
|
||||||
|
class MaskDecoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
transformer_dim: int,
|
||||||
|
transformer: nn.Module,
|
||||||
|
num_multimask_outputs: int = 3,
|
||||||
|
activation: Type[nn.Module] = nn.GELU,
|
||||||
|
iou_head_depth: int = 3,
|
||||||
|
iou_head_hidden_dim: int = 256,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Predicts masks given an image and prompt embeddings, using a
|
||||||
|
tranformer architecture.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
transformer_dim (int): the channel dimension of the transformer
|
||||||
|
transformer (nn.Module): the transformer used to predict masks
|
||||||
|
num_multimask_outputs (int): the number of masks to predict
|
||||||
|
when disambiguating masks
|
||||||
|
activation (nn.Module): the type of activation to use when
|
||||||
|
upscaling masks
|
||||||
|
iou_head_depth (int): the depth of the MLP used to predict
|
||||||
|
mask quality
|
||||||
|
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
||||||
|
used to predict mask quality
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.transformer_dim = transformer_dim
|
||||||
|
self.transformer = transformer
|
||||||
|
|
||||||
|
self.num_multimask_outputs = num_multimask_outputs
|
||||||
|
|
||||||
|
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||||
|
self.num_mask_tokens = num_multimask_outputs + 1
|
||||||
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||||
|
|
||||||
|
self.output_upscaling = nn.Sequential(
|
||||||
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(transformer_dim // 4),
|
||||||
|
activation(),
|
||||||
|
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||||
|
activation(),
|
||||||
|
)
|
||||||
|
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||||
|
[
|
||||||
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
||||||
|
for i in range(self.num_mask_tokens)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.iou_prediction_head = MLP(
|
||||||
|
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
image_embeddings: torch.Tensor,
|
||||||
|
image_pe: torch.Tensor,
|
||||||
|
sparse_prompt_embeddings: torch.Tensor,
|
||||||
|
dense_prompt_embeddings: torch.Tensor,
|
||||||
|
multimask_output: bool,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks given image and prompt embeddings.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
||||||
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
||||||
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
||||||
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
||||||
|
multimask_output (bool): Whether to return multiple masks or a single
|
||||||
|
mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: batched predicted masks
|
||||||
|
torch.Tensor: batched predictions of mask quality
|
||||||
|
"""
|
||||||
|
masks, iou_pred = self.predict_masks(
|
||||||
|
image_embeddings=image_embeddings,
|
||||||
|
image_pe=image_pe,
|
||||||
|
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Select the correct mask or masks for outptu
|
||||||
|
if multimask_output:
|
||||||
|
mask_slice = slice(1, None)
|
||||||
|
else:
|
||||||
|
mask_slice = slice(0, 1)
|
||||||
|
masks = masks[:, mask_slice, :, :]
|
||||||
|
iou_pred = iou_pred[:, mask_slice]
|
||||||
|
|
||||||
|
# Prepare output
|
||||||
|
return masks, iou_pred
|
||||||
|
|
||||||
|
def predict_masks(
|
||||||
|
self,
|
||||||
|
image_embeddings: torch.Tensor,
|
||||||
|
image_pe: torch.Tensor,
|
||||||
|
sparse_prompt_embeddings: torch.Tensor,
|
||||||
|
dense_prompt_embeddings: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Predicts masks. See 'forward' for more details."""
|
||||||
|
# Concatenate output tokens
|
||||||
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||||
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
||||||
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||||
|
|
||||||
|
# Expand per-image data in batch direction to be per-mask
|
||||||
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||||
|
src = src + dense_prompt_embeddings
|
||||||
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||||
|
b, c, h, w = src.shape
|
||||||
|
|
||||||
|
# Run the transformer
|
||||||
|
hs, src = self.transformer(src, pos_src, tokens)
|
||||||
|
iou_token_out = hs[:, 0, :]
|
||||||
|
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
||||||
|
|
||||||
|
# Upscale mask embeddings and predict masks using the mask tokens
|
||||||
|
src = src.transpose(1, 2).view(b, c, h, w)
|
||||||
|
upscaled_embedding = self.output_upscaling(src)
|
||||||
|
hyper_in_list: List[torch.Tensor] = []
|
||||||
|
for i in range(self.num_mask_tokens):
|
||||||
|
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
||||||
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||||
|
b, c, h, w = upscaled_embedding.shape
|
||||||
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||||
|
|
||||||
|
# Generate mask quality predictions
|
||||||
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||||
|
|
||||||
|
return masks, iou_pred
|
||||||
|
|
||||||
|
|
||||||
|
# Lightly adapted from
|
||||||
|
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_dim: int,
|
||||||
|
hidden_dim: int,
|
||||||
|
output_dim: int,
|
||||||
|
num_layers: int,
|
||||||
|
sigmoid_output: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.num_layers = num_layers
|
||||||
|
h = [hidden_dim] * (num_layers - 1)
|
||||||
|
self.layers = nn.ModuleList(
|
||||||
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
||||||
|
)
|
||||||
|
self.sigmoid_output = sigmoid_output
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
for i, layer in enumerate(self.layers):
|
||||||
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||||
|
if self.sigmoid_output:
|
||||||
|
x = F.sigmoid(x)
|
||||||
|
return x
|
214
lama_cleaner/plugins/segment_anything/modeling/prompt_encoder.py
Normal file
214
lama_cleaner/plugins/segment_anything/modeling/prompt_encoder.py
Normal file
@ -0,0 +1,214 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from typing import Any, Optional, Tuple, Type
|
||||||
|
|
||||||
|
from .common import LayerNorm2d
|
||||||
|
|
||||||
|
|
||||||
|
class PromptEncoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
image_embedding_size: Tuple[int, int],
|
||||||
|
input_image_size: Tuple[int, int],
|
||||||
|
mask_in_chans: int,
|
||||||
|
activation: Type[nn.Module] = nn.GELU,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Encodes prompts for input to SAM's mask decoder.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
embed_dim (int): The prompts' embedding dimension
|
||||||
|
image_embedding_size (tuple(int, int)): The spatial size of the
|
||||||
|
image embedding, as (H, W).
|
||||||
|
input_image_size (int): The padded size of the image as input
|
||||||
|
to the image encoder, as (H, W).
|
||||||
|
mask_in_chans (int): The number of hidden channels used for
|
||||||
|
encoding input masks.
|
||||||
|
activation (nn.Module): The activation to use when encoding
|
||||||
|
input masks.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.input_image_size = input_image_size
|
||||||
|
self.image_embedding_size = image_embedding_size
|
||||||
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||||||
|
|
||||||
|
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||||||
|
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
||||||
|
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||||||
|
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||||||
|
|
||||||
|
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||||||
|
self.mask_downscaling = nn.Sequential(
|
||||||
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(mask_in_chans // 4),
|
||||||
|
activation(),
|
||||||
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(mask_in_chans),
|
||||||
|
activation(),
|
||||||
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||||||
|
)
|
||||||
|
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||||||
|
|
||||||
|
def get_dense_pe(self) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Returns the positional encoding used to encode point prompts,
|
||||||
|
applied to a dense set of points the shape of the image encoding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Positional encoding with shape
|
||||||
|
1x(embed_dim)x(embedding_h)x(embedding_w)
|
||||||
|
"""
|
||||||
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||||
|
|
||||||
|
def _embed_points(
|
||||||
|
self,
|
||||||
|
points: torch.Tensor,
|
||||||
|
labels: torch.Tensor,
|
||||||
|
pad: bool,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Embeds point prompts."""
|
||||||
|
points = points + 0.5 # Shift to center of pixel
|
||||||
|
if pad:
|
||||||
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||||||
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||||||
|
points = torch.cat([points, padding_point], dim=1)
|
||||||
|
labels = torch.cat([labels, padding_label], dim=1)
|
||||||
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||||||
|
point_embedding[labels == -1] = 0.0
|
||||||
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||||
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||||
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||||
|
return point_embedding
|
||||||
|
|
||||||
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Embeds box prompts."""
|
||||||
|
boxes = boxes + 0.5 # Shift to center of pixel
|
||||||
|
coords = boxes.reshape(-1, 2, 2)
|
||||||
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||||||
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||||||
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||||||
|
return corner_embedding
|
||||||
|
|
||||||
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Embeds mask inputs."""
|
||||||
|
mask_embedding = self.mask_downscaling(masks)
|
||||||
|
return mask_embedding
|
||||||
|
|
||||||
|
def _get_batch_size(
|
||||||
|
self,
|
||||||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||||
|
boxes: Optional[torch.Tensor],
|
||||||
|
masks: Optional[torch.Tensor],
|
||||||
|
) -> int:
|
||||||
|
"""
|
||||||
|
Gets the batch size of the output given the batch size of the input prompts.
|
||||||
|
"""
|
||||||
|
if points is not None:
|
||||||
|
return points[0].shape[0]
|
||||||
|
elif boxes is not None:
|
||||||
|
return boxes.shape[0]
|
||||||
|
elif masks is not None:
|
||||||
|
return masks.shape[0]
|
||||||
|
else:
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def _get_device(self) -> torch.device:
|
||||||
|
return self.point_embeddings[0].weight.device
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||||
|
boxes: Optional[torch.Tensor],
|
||||||
|
masks: Optional[torch.Tensor],
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Embeds different types of prompts, returning both sparse and dense
|
||||||
|
embeddings.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
||||||
|
and labels to embed.
|
||||||
|
boxes (torch.Tensor or none): boxes to embed
|
||||||
|
masks (torch.Tensor or none): masks to embed
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
||||||
|
BxNx(embed_dim), where N is determined by the number of input points
|
||||||
|
and boxes.
|
||||||
|
torch.Tensor: dense embeddings for the masks, in the shape
|
||||||
|
Bx(embed_dim)x(embed_H)x(embed_W)
|
||||||
|
"""
|
||||||
|
bs = self._get_batch_size(points, boxes, masks)
|
||||||
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
||||||
|
if points is not None:
|
||||||
|
coords, labels = points
|
||||||
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||||||
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||||||
|
if boxes is not None:
|
||||||
|
box_embeddings = self._embed_boxes(boxes)
|
||||||
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||||||
|
|
||||||
|
if masks is not None:
|
||||||
|
dense_embeddings = self._embed_masks(masks)
|
||||||
|
else:
|
||||||
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||||||
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||||||
|
)
|
||||||
|
|
||||||
|
return sparse_embeddings, dense_embeddings
|
||||||
|
|
||||||
|
|
||||||
|
class PositionEmbeddingRandom(nn.Module):
|
||||||
|
"""
|
||||||
|
Positional encoding using random spatial frequencies.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||||||
|
super().__init__()
|
||||||
|
if scale is None or scale <= 0.0:
|
||||||
|
scale = 1.0
|
||||||
|
self.register_buffer(
|
||||||
|
"positional_encoding_gaussian_matrix",
|
||||||
|
scale * torch.randn((2, num_pos_feats)),
|
||||||
|
)
|
||||||
|
|
||||||
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Positionally encode points that are normalized to [0,1]."""
|
||||||
|
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||||
|
coords = 2 * coords - 1
|
||||||
|
coords = coords @ self.positional_encoding_gaussian_matrix
|
||||||
|
coords = 2 * np.pi * coords
|
||||||
|
# outputs d_1 x ... x d_n x C shape
|
||||||
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||||||
|
|
||||||
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||||||
|
"""Generate positional encoding for a grid of the specified size."""
|
||||||
|
h, w = size
|
||||||
|
device: Any = self.positional_encoding_gaussian_matrix.device
|
||||||
|
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
||||||
|
y_embed = grid.cumsum(dim=0) - 0.5
|
||||||
|
x_embed = grid.cumsum(dim=1) - 0.5
|
||||||
|
y_embed = y_embed / h
|
||||||
|
x_embed = x_embed / w
|
||||||
|
|
||||||
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
||||||
|
return pe.permute(2, 0, 1) # C x H x W
|
||||||
|
|
||||||
|
def forward_with_coords(
|
||||||
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Positionally encode points that are not normalized to [0,1]."""
|
||||||
|
coords = coords_input.clone()
|
||||||
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
||||||
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
||||||
|
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
174
lama_cleaner/plugins/segment_anything/modeling/sam.py
Normal file
174
lama_cleaner/plugins/segment_anything/modeling/sam.py
Normal file
@ -0,0 +1,174 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from typing import Any, Dict, List, Tuple
|
||||||
|
|
||||||
|
from .image_encoder import ImageEncoderViT
|
||||||
|
from .mask_decoder import MaskDecoder
|
||||||
|
from .prompt_encoder import PromptEncoder
|
||||||
|
|
||||||
|
|
||||||
|
class Sam(nn.Module):
|
||||||
|
mask_threshold: float = 0.0
|
||||||
|
image_format: str = "RGB"
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
image_encoder: ImageEncoderViT,
|
||||||
|
prompt_encoder: PromptEncoder,
|
||||||
|
mask_decoder: MaskDecoder,
|
||||||
|
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
||||||
|
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
SAM predicts object masks from an image and input prompts.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image_encoder (ImageEncoderViT): The backbone used to encode the
|
||||||
|
image into image embeddings that allow for efficient mask prediction.
|
||||||
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||||
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
||||||
|
and encoded prompts.
|
||||||
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||||
|
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.image_encoder = image_encoder
|
||||||
|
self.prompt_encoder = prompt_encoder
|
||||||
|
self.mask_decoder = mask_decoder
|
||||||
|
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
||||||
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> Any:
|
||||||
|
return self.pixel_mean.device
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batched_input: List[Dict[str, Any]],
|
||||||
|
multimask_output: bool,
|
||||||
|
) -> List[Dict[str, torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Predicts masks end-to-end from provided images and prompts.
|
||||||
|
If prompts are not known in advance, using SamPredictor is
|
||||||
|
recommended over calling the model directly.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batched_input (list(dict)): A list over input images, each a
|
||||||
|
dictionary with the following keys. A prompt key can be
|
||||||
|
excluded if it is not present.
|
||||||
|
'image': The image as a torch tensor in 3xHxW format,
|
||||||
|
already transformed for input to the model.
|
||||||
|
'original_size': (tuple(int, int)) The original size of
|
||||||
|
the image before transformation, as (H, W).
|
||||||
|
'point_coords': (torch.Tensor) Batched point prompts for
|
||||||
|
this image, with shape BxNx2. Already transformed to the
|
||||||
|
input frame of the model.
|
||||||
|
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
||||||
|
with shape BxN.
|
||||||
|
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
||||||
|
Already transformed to the input frame of the model.
|
||||||
|
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
||||||
|
in the form Bx1xHxW.
|
||||||
|
multimask_output (bool): Whether the model should predict multiple
|
||||||
|
disambiguating masks, or return a single mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(list(dict)): A list over input images, where each element is
|
||||||
|
as dictionary with the following keys.
|
||||||
|
'masks': (torch.Tensor) Batched binary mask predictions,
|
||||||
|
with shape BxCxHxW, where B is the number of input promts,
|
||||||
|
C is determiend by multimask_output, and (H, W) is the
|
||||||
|
original size of the image.
|
||||||
|
'iou_predictions': (torch.Tensor) The model's predictions
|
||||||
|
of mask quality, in shape BxC.
|
||||||
|
'low_res_logits': (torch.Tensor) Low resolution logits with
|
||||||
|
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
||||||
|
to subsequent iterations of prediction.
|
||||||
|
"""
|
||||||
|
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
||||||
|
image_embeddings = self.image_encoder(input_images)
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
||||||
|
if "point_coords" in image_record:
|
||||||
|
points = (image_record["point_coords"], image_record["point_labels"])
|
||||||
|
else:
|
||||||
|
points = None
|
||||||
|
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
||||||
|
points=points,
|
||||||
|
boxes=image_record.get("boxes", None),
|
||||||
|
masks=image_record.get("mask_inputs", None),
|
||||||
|
)
|
||||||
|
low_res_masks, iou_predictions = self.mask_decoder(
|
||||||
|
image_embeddings=curr_embedding.unsqueeze(0),
|
||||||
|
image_pe=self.prompt_encoder.get_dense_pe(),
|
||||||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_embeddings,
|
||||||
|
multimask_output=multimask_output,
|
||||||
|
)
|
||||||
|
masks = self.postprocess_masks(
|
||||||
|
low_res_masks,
|
||||||
|
input_size=image_record["image"].shape[-2:],
|
||||||
|
original_size=image_record["original_size"],
|
||||||
|
)
|
||||||
|
masks = masks > self.mask_threshold
|
||||||
|
outputs.append(
|
||||||
|
{
|
||||||
|
"masks": masks,
|
||||||
|
"iou_predictions": iou_predictions,
|
||||||
|
"low_res_logits": low_res_masks,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def postprocess_masks(
|
||||||
|
self,
|
||||||
|
masks: torch.Tensor,
|
||||||
|
input_size: Tuple[int, ...],
|
||||||
|
original_size: Tuple[int, ...],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Remove padding and upscale masks to the original image size.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
masks (torch.Tensor): Batched masks from the mask_decoder,
|
||||||
|
in BxCxHxW format.
|
||||||
|
input_size (tuple(int, int)): The size of the image input to the
|
||||||
|
model, in (H, W) format. Used to remove padding.
|
||||||
|
original_size (tuple(int, int)): The original size of the image
|
||||||
|
before resizing for input to the model, in (H, W) format.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
||||||
|
is given by original_size.
|
||||||
|
"""
|
||||||
|
masks = F.interpolate(
|
||||||
|
masks,
|
||||||
|
(self.image_encoder.img_size, self.image_encoder.img_size),
|
||||||
|
mode="bilinear",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
masks = masks[..., : input_size[0], : input_size[1]]
|
||||||
|
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
||||||
|
return masks
|
||||||
|
|
||||||
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Normalize pixel values and pad to a square input."""
|
||||||
|
# Normalize colors
|
||||||
|
x = (x - self.pixel_mean) / self.pixel_std
|
||||||
|
|
||||||
|
# Pad
|
||||||
|
h, w = x.shape[-2:]
|
||||||
|
padh = self.image_encoder.img_size - h
|
||||||
|
padw = self.image_encoder.img_size - w
|
||||||
|
x = F.pad(x, (0, padw, 0, padh))
|
||||||
|
return x
|
240
lama_cleaner/plugins/segment_anything/modeling/transformer.py
Normal file
240
lama_cleaner/plugins/segment_anything/modeling/transformer.py
Normal file
@ -0,0 +1,240 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Tuple, Type
|
||||||
|
|
||||||
|
from .common import MLPBlock
|
||||||
|
|
||||||
|
|
||||||
|
class TwoWayTransformer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
depth: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_dim: int,
|
||||||
|
activation: Type[nn.Module] = nn.ReLU,
|
||||||
|
attention_downsample_rate: int = 2,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
A transformer decoder that attends to an input image using
|
||||||
|
queries whose positional embedding is supplied.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
depth (int): number of layers in the transformer
|
||||||
|
embedding_dim (int): the channel dimension for the input embeddings
|
||||||
|
num_heads (int): the number of heads for multihead attention. Must
|
||||||
|
divide embedding_dim
|
||||||
|
mlp_dim (int): the channel dimension internal to the MLP block
|
||||||
|
activation (nn.Module): the activation to use in the MLP block
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.depth = depth
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.mlp_dim = mlp_dim
|
||||||
|
self.layers = nn.ModuleList()
|
||||||
|
|
||||||
|
for i in range(depth):
|
||||||
|
self.layers.append(
|
||||||
|
TwoWayAttentionBlock(
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
mlp_dim=mlp_dim,
|
||||||
|
activation=activation,
|
||||||
|
attention_downsample_rate=attention_downsample_rate,
|
||||||
|
skip_first_layer_pe=(i == 0),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.final_attn_token_to_image = Attention(
|
||||||
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||||
|
)
|
||||||
|
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
image_embedding: Tensor,
|
||||||
|
image_pe: Tensor,
|
||||||
|
point_embedding: Tensor,
|
||||||
|
) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
image_embedding (torch.Tensor): image to attend to. Should be shape
|
||||||
|
B x embedding_dim x h x w for any h and w.
|
||||||
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
||||||
|
have the same shape as image_embedding.
|
||||||
|
point_embedding (torch.Tensor): the embedding to add to the query points.
|
||||||
|
Must have shape B x N_points x embedding_dim for any N_points.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: the processed point_embedding
|
||||||
|
torch.Tensor: the processed image_embedding
|
||||||
|
"""
|
||||||
|
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
||||||
|
bs, c, h, w = image_embedding.shape
|
||||||
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
||||||
|
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
||||||
|
|
||||||
|
# Prepare queries
|
||||||
|
queries = point_embedding
|
||||||
|
keys = image_embedding
|
||||||
|
|
||||||
|
# Apply transformer blocks and final layernorm
|
||||||
|
for layer in self.layers:
|
||||||
|
queries, keys = layer(
|
||||||
|
queries=queries,
|
||||||
|
keys=keys,
|
||||||
|
query_pe=point_embedding,
|
||||||
|
key_pe=image_pe,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply the final attenion layer from the points to the image
|
||||||
|
q = queries + point_embedding
|
||||||
|
k = keys + image_pe
|
||||||
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
||||||
|
queries = queries + attn_out
|
||||||
|
queries = self.norm_final_attn(queries)
|
||||||
|
|
||||||
|
return queries, keys
|
||||||
|
|
||||||
|
|
||||||
|
class TwoWayAttentionBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedding_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_dim: int = 2048,
|
||||||
|
activation: Type[nn.Module] = nn.ReLU,
|
||||||
|
attention_downsample_rate: int = 2,
|
||||||
|
skip_first_layer_pe: bool = False,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
A transformer block with four layers: (1) self-attention of sparse
|
||||||
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
||||||
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
||||||
|
inputs.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
embedding_dim (int): the channel dimension of the embeddings
|
||||||
|
num_heads (int): the number of heads in the attention layers
|
||||||
|
mlp_dim (int): the hidden dimension of the mlp block
|
||||||
|
activation (nn.Module): the activation of the mlp block
|
||||||
|
skip_first_layer_pe (bool): skip the PE on the first layer
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.self_attn = Attention(embedding_dim, num_heads)
|
||||||
|
self.norm1 = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
self.cross_attn_token_to_image = Attention(
|
||||||
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||||
|
)
|
||||||
|
self.norm2 = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
||||||
|
self.norm3 = nn.LayerNorm(embedding_dim)
|
||||||
|
|
||||||
|
self.norm4 = nn.LayerNorm(embedding_dim)
|
||||||
|
self.cross_attn_image_to_token = Attention(
|
||||||
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
self.skip_first_layer_pe = skip_first_layer_pe
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
||||||
|
) -> Tuple[Tensor, Tensor]:
|
||||||
|
# Self attention block
|
||||||
|
if self.skip_first_layer_pe:
|
||||||
|
queries = self.self_attn(q=queries, k=queries, v=queries)
|
||||||
|
else:
|
||||||
|
q = queries + query_pe
|
||||||
|
attn_out = self.self_attn(q=q, k=q, v=queries)
|
||||||
|
queries = queries + attn_out
|
||||||
|
queries = self.norm1(queries)
|
||||||
|
|
||||||
|
# Cross attention block, tokens attending to image embedding
|
||||||
|
q = queries + query_pe
|
||||||
|
k = keys + key_pe
|
||||||
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
||||||
|
queries = queries + attn_out
|
||||||
|
queries = self.norm2(queries)
|
||||||
|
|
||||||
|
# MLP block
|
||||||
|
mlp_out = self.mlp(queries)
|
||||||
|
queries = queries + mlp_out
|
||||||
|
queries = self.norm3(queries)
|
||||||
|
|
||||||
|
# Cross attention block, image embedding attending to tokens
|
||||||
|
q = queries + query_pe
|
||||||
|
k = keys + key_pe
|
||||||
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
||||||
|
keys = keys + attn_out
|
||||||
|
keys = self.norm4(keys)
|
||||||
|
|
||||||
|
return queries, keys
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
"""
|
||||||
|
An attention layer that allows for downscaling the size of the embedding
|
||||||
|
after projection to queries, keys, and values.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embedding_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
downsample_rate: int = 1,
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
self.internal_dim = embedding_dim // downsample_rate
|
||||||
|
self.num_heads = num_heads
|
||||||
|
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||||
|
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||||
|
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||||
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||||
|
|
||||||
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
||||||
|
b, n, c = x.shape
|
||||||
|
x = x.reshape(b, n, num_heads, c // num_heads)
|
||||||
|
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
||||||
|
|
||||||
|
def _recombine_heads(self, x: Tensor) -> Tensor:
|
||||||
|
b, n_heads, n_tokens, c_per_head = x.shape
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
||||||
|
|
||||||
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
||||||
|
# Input projections
|
||||||
|
q = self.q_proj(q)
|
||||||
|
k = self.k_proj(k)
|
||||||
|
v = self.v_proj(v)
|
||||||
|
|
||||||
|
# Separate into heads
|
||||||
|
q = self._separate_heads(q, self.num_heads)
|
||||||
|
k = self._separate_heads(k, self.num_heads)
|
||||||
|
v = self._separate_heads(v, self.num_heads)
|
||||||
|
|
||||||
|
# Attention
|
||||||
|
_, _, _, c_per_head = q.shape
|
||||||
|
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
||||||
|
attn = attn / math.sqrt(c_per_head)
|
||||||
|
attn = torch.softmax(attn, dim=-1)
|
||||||
|
|
||||||
|
# Get output
|
||||||
|
out = attn @ v
|
||||||
|
out = self._recombine_heads(out)
|
||||||
|
out = self.out_proj(out)
|
||||||
|
|
||||||
|
return out
|
285
lama_cleaner/plugins/segment_anything/predictor.py
Normal file
285
lama_cleaner/plugins/segment_anything/predictor.py
Normal file
@ -0,0 +1,285 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from .modeling import Sam
|
||||||
|
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
from .utils.transforms import ResizeLongestSide
|
||||||
|
|
||||||
|
|
||||||
|
class SamPredictor:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
sam_model: Sam,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Uses SAM to calculate the image embedding for an image, and then
|
||||||
|
allow repeated, efficient mask prediction given prompts.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
sam_model (Sam): The model to use for mask prediction.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.model = sam_model
|
||||||
|
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
||||||
|
self.reset_image()
|
||||||
|
|
||||||
|
def set_image(
|
||||||
|
self,
|
||||||
|
image: np.ndarray,
|
||||||
|
image_format: str = "RGB",
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Calculates the image embeddings for the provided image, allowing
|
||||||
|
masks to be predicted with the 'predict' method.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image (np.ndarray): The image for calculating masks. Expects an
|
||||||
|
image in HWC uint8 format, with pixel values in [0, 255].
|
||||||
|
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||||||
|
"""
|
||||||
|
assert image_format in [
|
||||||
|
"RGB",
|
||||||
|
"BGR",
|
||||||
|
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
||||||
|
if image_format != self.model.image_format:
|
||||||
|
image = image[..., ::-1]
|
||||||
|
|
||||||
|
# Transform the image to the form expected by the model
|
||||||
|
input_image = self.transform.apply_image(image)
|
||||||
|
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
||||||
|
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[
|
||||||
|
None, :, :, :
|
||||||
|
]
|
||||||
|
|
||||||
|
self.set_torch_image(input_image_torch, image.shape[:2])
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def set_torch_image(
|
||||||
|
self,
|
||||||
|
transformed_image: torch.Tensor,
|
||||||
|
original_image_size: Tuple[int, ...],
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Calculates the image embeddings for the provided image, allowing
|
||||||
|
masks to be predicted with the 'predict' method. Expects the input
|
||||||
|
image to be already transformed to the format expected by the model.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
transformed_image (torch.Tensor): The input image, with shape
|
||||||
|
1x3xHxW, which has been transformed with ResizeLongestSide.
|
||||||
|
original_image_size (tuple(int, int)): The size of the image
|
||||||
|
before transformation, in (H, W) format.
|
||||||
|
"""
|
||||||
|
assert (
|
||||||
|
len(transformed_image.shape) == 4
|
||||||
|
and transformed_image.shape[1] == 3
|
||||||
|
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
|
||||||
|
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
|
||||||
|
self.reset_image()
|
||||||
|
|
||||||
|
self.original_size = original_image_size
|
||||||
|
self.input_size = tuple(transformed_image.shape[-2:])
|
||||||
|
input_image = self.model.preprocess(transformed_image)
|
||||||
|
self.features = self.model.image_encoder(input_image)
|
||||||
|
self.is_image_set = True
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self,
|
||||||
|
point_coords: Optional[np.ndarray] = None,
|
||||||
|
point_labels: Optional[np.ndarray] = None,
|
||||||
|
box: Optional[np.ndarray] = None,
|
||||||
|
mask_input: Optional[np.ndarray] = None,
|
||||||
|
multimask_output: bool = True,
|
||||||
|
return_logits: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks for the given input prompts, using the currently set image.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||||||
|
model. Each point is in (X,Y) in pixels.
|
||||||
|
point_labels (np.ndarray or None): A length N array of labels for the
|
||||||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||||
|
background point.
|
||||||
|
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||||||
|
model, in XYXY format.
|
||||||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||||
|
coming from a previous prediction iteration. Has form 1xHxW, where
|
||||||
|
for SAM, H=W=256.
|
||||||
|
multimask_output (bool): If true, the model will return three masks.
|
||||||
|
For ambiguous input prompts (such as a single click), this will often
|
||||||
|
produce better masks than a single prediction. If only a single
|
||||||
|
mask is needed, the model's predicted quality score can be used
|
||||||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||||
|
input prompts, multimask_output=False can give better results.
|
||||||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||||||
|
instead of a binary mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(np.ndarray): The output masks in CxHxW format, where C is the
|
||||||
|
number of masks, and (H, W) is the original image size.
|
||||||
|
(np.ndarray): An array of length C containing the model's
|
||||||
|
predictions for the quality of each mask.
|
||||||
|
(np.ndarray): An array of shape CxHxW, where C is the number
|
||||||
|
of masks and H=W=256. These low resolution logits can be passed to
|
||||||
|
a subsequent iteration as mask input.
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError(
|
||||||
|
"An image must be set with .set_image(...) before mask prediction."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Transform input prompts
|
||||||
|
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
||||||
|
if point_coords is not None:
|
||||||
|
assert (
|
||||||
|
point_labels is not None
|
||||||
|
), "point_labels must be supplied if point_coords is supplied."
|
||||||
|
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
||||||
|
coords_torch = torch.as_tensor(
|
||||||
|
point_coords, dtype=torch.float, device=self.device
|
||||||
|
)
|
||||||
|
labels_torch = torch.as_tensor(
|
||||||
|
point_labels, dtype=torch.int, device=self.device
|
||||||
|
)
|
||||||
|
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
||||||
|
if box is not None:
|
||||||
|
box = self.transform.apply_boxes(box, self.original_size)
|
||||||
|
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||||||
|
box_torch = box_torch[None, :]
|
||||||
|
if mask_input is not None:
|
||||||
|
mask_input_torch = torch.as_tensor(
|
||||||
|
mask_input, dtype=torch.float, device=self.device
|
||||||
|
)
|
||||||
|
mask_input_torch = mask_input_torch[None, :, :, :]
|
||||||
|
|
||||||
|
masks, iou_predictions, low_res_masks = self.predict_torch(
|
||||||
|
coords_torch,
|
||||||
|
labels_torch,
|
||||||
|
box_torch,
|
||||||
|
mask_input_torch,
|
||||||
|
multimask_output,
|
||||||
|
return_logits=return_logits,
|
||||||
|
)
|
||||||
|
|
||||||
|
masks = masks[0].detach().cpu().numpy()
|
||||||
|
iou_predictions = iou_predictions[0].detach().cpu().numpy()
|
||||||
|
low_res_masks = low_res_masks[0].detach().cpu().numpy()
|
||||||
|
return masks, iou_predictions, low_res_masks
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def predict_torch(
|
||||||
|
self,
|
||||||
|
point_coords: Optional[torch.Tensor],
|
||||||
|
point_labels: Optional[torch.Tensor],
|
||||||
|
boxes: Optional[torch.Tensor] = None,
|
||||||
|
mask_input: Optional[torch.Tensor] = None,
|
||||||
|
multimask_output: bool = True,
|
||||||
|
return_logits: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks for the given input prompts, using the currently set image.
|
||||||
|
Input prompts are batched torch tensors and are expected to already be
|
||||||
|
transformed to the input frame using ResizeLongestSide.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||||||
|
model. Each point is in (X,Y) in pixels.
|
||||||
|
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||||||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||||
|
background point.
|
||||||
|
box (np.ndarray or None): A Bx4 array given a box prompt to the
|
||||||
|
model, in XYXY format.
|
||||||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||||
|
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||||||
|
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||||||
|
predict method do not need further transformation.
|
||||||
|
multimask_output (bool): If true, the model will return three masks.
|
||||||
|
For ambiguous input prompts (such as a single click), this will often
|
||||||
|
produce better masks than a single prediction. If only a single
|
||||||
|
mask is needed, the model's predicted quality score can be used
|
||||||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||||
|
input prompts, multimask_output=False can give better results.
|
||||||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||||||
|
instead of a binary mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||||||
|
number of masks, and (H, W) is the original image size.
|
||||||
|
(torch.Tensor): An array of shape BxC containing the model's
|
||||||
|
predictions for the quality of each mask.
|
||||||
|
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||||||
|
of masks and H=W=256. These low res logits can be passed to
|
||||||
|
a subsequent iteration as mask input.
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError(
|
||||||
|
"An image must be set with .set_image(...) before mask prediction."
|
||||||
|
)
|
||||||
|
|
||||||
|
if point_coords is not None:
|
||||||
|
points = (point_coords, point_labels)
|
||||||
|
else:
|
||||||
|
points = None
|
||||||
|
|
||||||
|
# Embed prompts
|
||||||
|
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
||||||
|
points=points,
|
||||||
|
boxes=boxes,
|
||||||
|
masks=mask_input,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Predict masks
|
||||||
|
low_res_masks, iou_predictions = self.model.mask_decoder(
|
||||||
|
image_embeddings=self.features,
|
||||||
|
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
||||||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_embeddings,
|
||||||
|
multimask_output=multimask_output,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Upscale the masks to the original image resolution
|
||||||
|
masks = self.model.postprocess_masks(
|
||||||
|
low_res_masks, self.input_size, self.original_size
|
||||||
|
)
|
||||||
|
|
||||||
|
if not return_logits:
|
||||||
|
masks = masks > self.model.mask_threshold
|
||||||
|
|
||||||
|
return masks, iou_predictions, low_res_masks
|
||||||
|
|
||||||
|
def get_image_embedding(self) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Returns the image embeddings for the currently set image, with
|
||||||
|
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||||||
|
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError(
|
||||||
|
"An image must be set with .set_image(...) to generate an embedding."
|
||||||
|
)
|
||||||
|
assert (
|
||||||
|
self.features is not None
|
||||||
|
), "Features must exist if an image has been set."
|
||||||
|
return self.features
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> torch.device:
|
||||||
|
return self.model.device
|
||||||
|
|
||||||
|
def reset_image(self) -> None:
|
||||||
|
"""Resets the currently set image."""
|
||||||
|
self.is_image_set = False
|
||||||
|
self.features = None
|
||||||
|
self.orig_h = None
|
||||||
|
self.orig_w = None
|
||||||
|
self.input_h = None
|
||||||
|
self.input_w = None
|
5
lama_cleaner/plugins/segment_anything/utils/__init__.py
Normal file
5
lama_cleaner/plugins/segment_anything/utils/__init__.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
112
lama_cleaner/plugins/segment_anything/utils/transforms.py
Normal file
112
lama_cleaner/plugins/segment_anything/utils/transforms.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
||||||
|
|
||||||
|
from copy import deepcopy
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
|
||||||
|
class ResizeLongestSide:
|
||||||
|
"""
|
||||||
|
Resizes images to longest side 'target_length', as well as provides
|
||||||
|
methods for resizing coordinates and boxes. Provides methods for
|
||||||
|
transforming both numpy array and batched torch tensors.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, target_length: int) -> None:
|
||||||
|
self.target_length = target_length
|
||||||
|
|
||||||
|
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Expects a numpy array with shape HxWxC in uint8 format.
|
||||||
|
"""
|
||||||
|
target_size = self.get_preprocess_shape(
|
||||||
|
image.shape[0], image.shape[1], self.target_length
|
||||||
|
)
|
||||||
|
return np.array(resize(to_pil_image(image), target_size))
|
||||||
|
|
||||||
|
def apply_coords(
|
||||||
|
self, coords: np.ndarray, original_size: Tuple[int, ...]
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Expects a numpy array of length 2 in the final dimension. Requires the
|
||||||
|
original image size in (H, W) format.
|
||||||
|
"""
|
||||||
|
old_h, old_w = original_size
|
||||||
|
new_h, new_w = self.get_preprocess_shape(
|
||||||
|
original_size[0], original_size[1], self.target_length
|
||||||
|
)
|
||||||
|
coords = deepcopy(coords).astype(float)
|
||||||
|
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||||
|
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
def apply_boxes(
|
||||||
|
self, boxes: np.ndarray, original_size: Tuple[int, ...]
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Expects a numpy array shape Bx4. Requires the original image size
|
||||||
|
in (H, W) format.
|
||||||
|
"""
|
||||||
|
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
||||||
|
return boxes.reshape(-1, 4)
|
||||||
|
|
||||||
|
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Expects batched images with shape BxCxHxW and float format. This
|
||||||
|
transformation may not exactly match apply_image. apply_image is
|
||||||
|
the transformation expected by the model.
|
||||||
|
"""
|
||||||
|
# Expects an image in BCHW format. May not exactly match apply_image.
|
||||||
|
target_size = self.get_preprocess_shape(
|
||||||
|
image.shape[0], image.shape[1], self.target_length
|
||||||
|
)
|
||||||
|
return F.interpolate(
|
||||||
|
image, target_size, mode="bilinear", align_corners=False, antialias=True
|
||||||
|
)
|
||||||
|
|
||||||
|
def apply_coords_torch(
|
||||||
|
self, coords: torch.Tensor, original_size: Tuple[int, ...]
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Expects a torch tensor with length 2 in the last dimension. Requires the
|
||||||
|
original image size in (H, W) format.
|
||||||
|
"""
|
||||||
|
old_h, old_w = original_size
|
||||||
|
new_h, new_w = self.get_preprocess_shape(
|
||||||
|
original_size[0], original_size[1], self.target_length
|
||||||
|
)
|
||||||
|
coords = deepcopy(coords).to(torch.float)
|
||||||
|
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||||
|
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
def apply_boxes_torch(
|
||||||
|
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Expects a torch tensor with shape Bx4. Requires the original image
|
||||||
|
size in (H, W) format.
|
||||||
|
"""
|
||||||
|
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
||||||
|
return boxes.reshape(-1, 4)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_preprocess_shape(
|
||||||
|
oldh: int, oldw: int, long_side_length: int
|
||||||
|
) -> Tuple[int, int]:
|
||||||
|
"""
|
||||||
|
Compute the output size given input size and target long side length.
|
||||||
|
"""
|
||||||
|
scale = long_side_length * 1.0 / max(oldh, oldw)
|
||||||
|
newh, neww = oldh * scale, oldw * scale
|
||||||
|
neww = int(neww + 0.5)
|
||||||
|
newh = int(newh + 0.5)
|
||||||
|
return (newh, neww)
|
@ -1,4 +1,5 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
import hashlib
|
||||||
import os
|
import os
|
||||||
|
|
||||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||||
@ -315,6 +316,10 @@ def run_plugin():
|
|||||||
|
|
||||||
start = time.time()
|
start = time.time()
|
||||||
try:
|
try:
|
||||||
|
form = dict(form)
|
||||||
|
if name == InteractiveSeg.name:
|
||||||
|
img_md5 = hashlib.md5(origin_image_bytes).hexdigest()
|
||||||
|
form["img_md5"] = img_md5
|
||||||
bgr_res = plugins[name](rgb_np_img, files, form)
|
bgr_res = plugins[name](rgb_np_img, files, form)
|
||||||
except RuntimeError as e:
|
except RuntimeError as e:
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
@ -437,7 +442,9 @@ def build_plugins(args):
|
|||||||
global plugins
|
global plugins
|
||||||
if args.enable_interactive_seg:
|
if args.enable_interactive_seg:
|
||||||
logger.info(f"Initialize {InteractiveSeg.name} plugin")
|
logger.info(f"Initialize {InteractiveSeg.name} plugin")
|
||||||
plugins[InteractiveSeg.name] = InteractiveSeg()
|
plugins[InteractiveSeg.name] = InteractiveSeg(
|
||||||
|
args.interactive_seg_model, args.interactive_seg_device
|
||||||
|
)
|
||||||
if args.enable_remove_bg:
|
if args.enable_remove_bg:
|
||||||
logger.info(f"Initialize {RemoveBG.name} plugin")
|
logger.info(f"Initialize {RemoveBG.name} plugin")
|
||||||
plugins[RemoveBG.name] = RemoveBG()
|
plugins[RemoveBG.name] = RemoveBG()
|
||||||
@ -452,6 +459,12 @@ def build_plugins(args):
|
|||||||
)
|
)
|
||||||
if args.enable_gfpgan:
|
if args.enable_gfpgan:
|
||||||
logger.info(f"Initialize {GFPGANPlugin.name} plugin")
|
logger.info(f"Initialize {GFPGANPlugin.name} plugin")
|
||||||
|
if args.enable_realesrgan:
|
||||||
|
logger.info("Use realesrgan as GFPGAN background upscaler")
|
||||||
|
else:
|
||||||
|
logger.info(
|
||||||
|
f"GFPGAN no background upscaler, use --enable-realesrgan to enable it"
|
||||||
|
)
|
||||||
plugins[GFPGANPlugin.name] = GFPGANPlugin(
|
plugins[GFPGANPlugin.name] = GFPGANPlugin(
|
||||||
args.gfpgan_device, upscaler=plugins.get(RealESRGANUpscaler.name, None)
|
args.gfpgan_device, upscaler=plugins.get(RealESRGANUpscaler.name, None)
|
||||||
)
|
)
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 7.7 KiB |
@ -1,43 +0,0 @@
|
|||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from lama_cleaner.plugins import InteractiveSeg, Click
|
|
||||||
|
|
||||||
current_dir = Path(__file__).parent.absolute().resolve()
|
|
||||||
save_dir = current_dir / "result"
|
|
||||||
save_dir.mkdir(exist_ok=True, parents=True)
|
|
||||||
img_p = current_dir / "overture-creations-5sI6fQgYIuo.png"
|
|
||||||
|
|
||||||
|
|
||||||
def test_interactive_seg():
|
|
||||||
interactive_seg_model = InteractiveSeg()
|
|
||||||
img = cv2.imread(str(img_p))
|
|
||||||
pred = interactive_seg_model.forward(
|
|
||||||
img, clicks=[Click(coords=(256, 256), indx=0, is_positive=True)]
|
|
||||||
)
|
|
||||||
cv2.imwrite(str(save_dir / "test_interactive_seg.png"), pred)
|
|
||||||
|
|
||||||
|
|
||||||
def test_interactive_seg_with_negative_click():
|
|
||||||
interactive_seg_model = InteractiveSeg()
|
|
||||||
img = cv2.imread(str(img_p))
|
|
||||||
pred = interactive_seg_model.forward(
|
|
||||||
img,
|
|
||||||
clicks=[
|
|
||||||
Click(coords=(256, 256), indx=0, is_positive=True),
|
|
||||||
Click(coords=(384, 256), indx=1, is_positive=False),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
cv2.imwrite(str(save_dir / "test_interactive_seg_negative.png"), pred)
|
|
||||||
|
|
||||||
|
|
||||||
def test_interactive_seg_with_prev_mask():
|
|
||||||
interactive_seg_model = InteractiveSeg()
|
|
||||||
img = cv2.imread(str(img_p))
|
|
||||||
mask = np.zeros_like(img)[:, :, 0]
|
|
||||||
pred = interactive_seg_model.forward(
|
|
||||||
img, clicks=[Click(coords=(256, 256), indx=0, is_positive=True)], prev_mask=mask
|
|
||||||
)
|
|
||||||
cv2.imwrite(str(save_dir / "test_interactive_seg_with_mask.png"), pred)
|
|
@ -1,3 +1,8 @@
|
|||||||
|
import hashlib
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
|
||||||
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
@ -9,12 +14,14 @@ from lama_cleaner.plugins import (
|
|||||||
RealESRGANUpscaler,
|
RealESRGANUpscaler,
|
||||||
GFPGANPlugin,
|
GFPGANPlugin,
|
||||||
RestoreFormerPlugin,
|
RestoreFormerPlugin,
|
||||||
|
InteractiveSeg,
|
||||||
)
|
)
|
||||||
|
|
||||||
current_dir = Path(__file__).parent.absolute().resolve()
|
current_dir = Path(__file__).parent.absolute().resolve()
|
||||||
save_dir = current_dir / "result"
|
save_dir = current_dir / "result"
|
||||||
save_dir.mkdir(exist_ok=True, parents=True)
|
save_dir.mkdir(exist_ok=True, parents=True)
|
||||||
img_p = current_dir / "bunny.jpeg"
|
img_p = current_dir / "bunny.jpeg"
|
||||||
|
img_bytes = open(img_p, "rb").read()
|
||||||
bgr_img = cv2.imread(str(img_p))
|
bgr_img = cv2.imread(str(img_p))
|
||||||
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
@ -64,3 +71,21 @@ def test_restoreformer(device):
|
|||||||
model = RestoreFormerPlugin(device)
|
model = RestoreFormerPlugin(device)
|
||||||
res = model(rgb_img, None, None)
|
res = model(rgb_img, None, None)
|
||||||
_save(res, f"test_restoreformer_{device}.png")
|
_save(res, f"test_restoreformer_{device}.png")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
||||||
|
def test_segment_anything(device):
|
||||||
|
if device == "cuda" and not torch.cuda.is_available():
|
||||||
|
return
|
||||||
|
if device == "mps" and not torch.backends.mps.is_available():
|
||||||
|
return
|
||||||
|
img_md5 = hashlib.md5(img_bytes).hexdigest()
|
||||||
|
model = InteractiveSeg("vit_l", device)
|
||||||
|
new_mask = model.forward(rgb_img, [[448 // 2, 394 // 2, 1]], img_md5)
|
||||||
|
|
||||||
|
save_name = f"test_segment_anything_{device}.png"
|
||||||
|
_save(new_mask, save_name)
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
model.forward(rgb_img, [[448 // 2, 394 // 2, 1]], img_md5)
|
||||||
|
print(f"Time for {save_name}: {time.time() - start:.2f}s")
|
||||||
|
Loading…
Reference in New Issue
Block a user