make generate mask from RemoveBG && AnimeSeg work

This commit is contained in:
Qing 2024-01-02 22:32:40 +08:00
parent 6253016019
commit aca85543ca
22 changed files with 244 additions and 100 deletions

View File

@ -28,11 +28,13 @@ from lama_cleaner.helper import (
pil_to_bytes,
numpy_to_bytes,
concat_alpha_channel,
gen_frontend_mask,
)
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.model_info import ModelInfo
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.plugins import build_plugins, InteractiveSeg, RemoveBG, AnimeSeg
from lama_cleaner.plugins.base_plugin import BasePlugin
from lama_cleaner.schema import (
GenInfoResponse,
ApiConfig,
@ -41,6 +43,7 @@ from lama_cleaner.schema import (
InpaintRequest,
RunPluginRequest,
SDSampler,
PluginInfo,
)
from lama_cleaner.file_manager import FileManager
@ -145,7 +148,8 @@ class Api:
self.add_api_route("/api/v1/model", self.api_switch_model, methods=["POST"], response_model=ModelInfo)
self.add_api_route("/api/v1/inputimage", self.api_input_image, methods=["GET"])
self.add_api_route("/api/v1/inpaint", self.api_inpaint, methods=["POST"])
self.add_api_route("/api/v1/run_plugin", self.api_run_plugin, methods=["POST"])
self.add_api_route("/api/v1/run_plugin_gen_mask", self.api_run_plugin_gen_mask, methods=["POST"])
self.add_api_route("/api/v1/run_plugin_gen_image", self.api_run_plugin_gen_image, methods=["POST"])
self.add_api_route("/api/v1/samplers", self.api_samplers, methods=["GET"])
self.app.mount("/", StaticFiles(directory=WEB_APP_DIR, html=True), name="assets")
# fmt: on
@ -173,7 +177,14 @@ class Api:
def api_server_config(self) -> ServerConfigResponse:
return ServerConfigResponse(
plugins=list(self.plugins.keys()),
plugins=[
PluginInfo(
name=it.name,
support_gen_image=it.support_gen_image,
support_gen_mask=it.support_gen_mask,
)
for it in self.plugins.values()
],
enableFileManager=self.file_manager is not None,
enableAutoSaving=self.config.output_dir is not None,
enableControlnet=self.model_manager.enable_controlnet,
@ -237,22 +248,22 @@ class Api:
headers={"X-Seed": str(req.sd_seed)},
)
def api_run_plugin(self, req: RunPluginRequest):
def api_run_plugin_gen_image(self, req: RunPluginRequest):
ext = "png"
if req.name not in self.plugins:
raise HTTPException(status_code=404, detail="Plugin not found")
rgb_np_img, alpha_channel, infos = decode_base64_to_image(req.image)
bgr_np_img = self.plugins[req.name](rgb_np_img, req)
torch_gc()
if req.name == InteractiveSeg.name:
return Response(
content=numpy_to_bytes(bgr_np_img, ext),
media_type=f"image/{ext}",
raise HTTPException(status_code=422, detail="Plugin not found")
if not self.plugins[req.name].support_gen_image:
raise HTTPException(
status_code=422, detail="Plugin does not support output image"
)
if bgr_np_img.shape[2] == 4:
rgba_np_img = bgr_np_img
rgb_np_img, alpha_channel, infos = decode_base64_to_image(req.image)
bgr_or_rgba_np_img = self.plugins[req.name].gen_image(rgb_np_img, req)
torch_gc()
if bgr_or_rgba_np_img.shape[2] == 4:
rgba_np_img = bgr_or_rgba_np_img
else:
rgba_np_img = cv2.cvtColor(bgr_np_img, cv2.COLOR_BGR2RGB)
rgba_np_img = cv2.cvtColor(bgr_or_rgba_np_img, cv2.COLOR_BGR2RGB)
rgba_np_img = concat_alpha_channel(rgba_np_img, alpha_channel)
return Response(
@ -265,6 +276,22 @@ class Api:
media_type=f"image/{ext}",
)
def api_run_plugin_gen_mask(self, req: RunPluginRequest):
if req.name not in self.plugins:
raise HTTPException(status_code=422, detail="Plugin not found")
if not self.plugins[req.name].support_gen_mask:
raise HTTPException(
status_code=422, detail="Plugin does not support output image"
)
rgb_np_img, alpha_channel, infos = decode_base64_to_image(req.image)
bgr_or_gray_mask = self.plugins[req.name].gen_mask(rgb_np_img, req)
torch_gc()
res_mask = gen_frontend_mask(bgr_or_gray_mask)
return Response(
content=numpy_to_bytes(res_mask, "png"),
media_type="image/png",
)
def api_samplers(self) -> List[str]:
return [member.value for member in SDSampler.__members__.values()]
@ -290,7 +317,7 @@ class Api:
)
return None
def _build_plugins(self) -> Dict:
def _build_plugins(self) -> Dict[str, BasePlugin]:
return build_plugins(
self.config.enable_interactive_seg,
self.config.interactive_seg_model,

View File

@ -350,3 +350,23 @@ def concat_alpha_channel(rgb_np_img, alpha_channel) -> np.ndarray:
(rgb_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
)
return rgb_np_img
def gen_frontend_mask(bgr_or_gray_mask):
if len(bgr_or_gray_mask.shape) == 3 and bgr_or_gray_mask.shape[2] != 1:
bgr_or_gray_mask = cv2.cvtColor(bgr_or_gray_mask, cv2.COLOR_BGR2GRAY)
# fronted brush color "ffcc00bb"
# TODO: how to set kernel size?
kernel_size = 9
bgr_or_gray_mask = cv2.dilate(
bgr_or_gray_mask,
np.ones((kernel_size, kernel_size), np.uint8),
iterations=1,
)
res_mask = np.zeros(
(bgr_or_gray_mask.shape[0], bgr_or_gray_mask.shape[1], 4), dtype=np.uint8
)
res_mask[bgr_or_gray_mask > 128] = [255, 203, 0, int(255 * 0.73)]
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
return res_mask

View File

@ -1,4 +1,3 @@
from enum import Enum
from typing import List
from pydantic import computed_field, BaseModel

View File

@ -1,11 +1,13 @@
from typing import Dict
from loguru import logger
from .interactive_seg import InteractiveSeg
from .remove_bg import RemoveBG
from .realesrgan import RealESRGANUpscaler
from .gfpgan_plugin import GFPGANPlugin
from .restoreformer import RestoreFormerPlugin
from .anime_seg import AnimeSeg
from .gfpgan_plugin import GFPGANPlugin
from .interactive_seg import InteractiveSeg
from .realesrgan import RealESRGANUpscaler
from .remove_bg import RemoveBG
from .restoreformer import RestoreFormerPlugin
from ..const import InteractiveSegModel, Device, RealESRGANModel
@ -23,7 +25,7 @@ def build_plugins(
enable_restoreformer: bool,
restoreformer_device: Device,
no_half: bool,
):
) -> Dict:
plugins = {}
if enable_interactive_seg:
logger.info(f"Initialize {InteractiveSeg.name} plugin")

View File

@ -416,6 +416,8 @@ ANIME_SEG_MODELS = {
class AnimeSeg(BasePlugin):
# Model from: https://github.com/SkyTNT/anime-segmentation
name = "AnimeSeg"
support_gen_image = True
support_gen_mask = True
def __init__(self):
super().__init__()
@ -426,10 +428,19 @@ class AnimeSeg(BasePlugin):
ANIME_SEG_MODELS["md5"],
)
def __call__(self, rgb_np_img, req: RunPluginRequest):
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
mask = self.forward(rgb_np_img)
mask = Image.fromarray(mask, mode="L")
h0, w0 = rgb_np_img.shape[0], rgb_np_img.shape[1]
empty = Image.new("RGBA", (w0, h0), 0)
img = Image.fromarray(rgb_np_img)
cutout = Image.composite(img, empty, mask)
return np.asarray(cutout)
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
return self.forward(rgb_np_img)
@torch.no_grad()
@torch.inference_mode()
def forward(self, rgb_np_img):
s = 1024
@ -448,9 +459,4 @@ class AnimeSeg(BasePlugin):
mask = self.model(tmpImg)
mask = mask[0, :, ph // 2 : ph // 2 + h, pw // 2 : pw // 2 + w]
mask = cv2.resize(mask.cpu().numpy().transpose((1, 2, 0)), (w0, h0))
mask = Image.fromarray((mask * 255).astype("uint8"), mode="L")
empty = Image.new("RGBA", (w0, h0), 0)
img = Image.fromarray(rgb_np_img)
cutout = Image.composite(img, empty, mask)
return np.asarray(cutout)
return (mask * 255).astype("uint8")

View File

@ -5,15 +5,23 @@ from lama_cleaner.schema import RunPluginRequest
class BasePlugin:
name: str
support_gen_image: bool = False
support_gen_mask: bool = False
def __init__(self):
err_msg = self.check_dep()
if err_msg:
logger.error(err_msg)
exit(-1)
def __call__(self, rgb_np_img, req: RunPluginRequest) -> np.array:
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
# return RGBA np image or BGR np image
...
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
# return GRAY or BGR np image, 255 means foreground, 0 means background
...
def check_dep(self):
...

View File

@ -1,4 +1,5 @@
import cv2
import numpy as np
from loguru import logger
from lama_cleaner.helper import download_model
@ -8,6 +9,7 @@ from lama_cleaner.schema import RunPluginRequest
class GFPGANPlugin(BasePlugin):
name = "GFPGAN"
support_gen_image = True
def __init__(self, device, upscaler=None):
super().__init__()
@ -37,7 +39,7 @@ class GFPGANPlugin(BasePlugin):
self.face_enhancer.face_helper.face_det.to(device)
)
def __call__(self, rgb_np_img, req: RunPluginRequest):
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
weight = 0.5
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
logger.info(f"GFPGAN input shape: {bgr_np_img.shape}")

View File

@ -4,6 +4,7 @@ from typing import List
import cv2
import numpy as np
import torch
from loguru import logger
from lama_cleaner.helper import download_model
@ -34,6 +35,7 @@ SEGMENT_ANYTHING_MODELS = {
class InteractiveSeg(BasePlugin):
name = "InteractiveSeg"
support_gen_mask = True
def __init__(self, model_name, device):
super().__init__()
@ -47,10 +49,11 @@ class InteractiveSeg(BasePlugin):
)
self.prev_img_md5 = None
def __call__(self, rgb_np_img, req: RunPluginRequest):
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
img_md5 = hashlib.md5(req.image.encode("utf-8")).hexdigest()
return self.forward(rgb_np_img, req.clicks, img_md5)
@torch.inference_mode()
def forward(self, rgb_np_img, clicks: List[List], img_md5: str):
input_point = []
input_label = []
@ -70,13 +73,4 @@ class InteractiveSeg(BasePlugin):
multimask_output=False,
)
mask = masks[0].astype(np.uint8) * 255
# TODO: how to set kernel size?
kernel_size = 9
mask = cv2.dilate(
mask, np.ones((kernel_size, kernel_size), np.uint8), iterations=1
)
# fronted brush color "ffcc00bb"
res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
res_mask[mask == 255] = [255, 203, 0, int(255 * 0.73)]
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
return res_mask
return mask

View File

@ -1,6 +1,8 @@
from enum import Enum
import cv2
import numpy as np
import torch
from loguru import logger
from lama_cleaner.const import RealESRGANModel
@ -11,6 +13,7 @@ from lama_cleaner.schema import RunPluginRequest
class RealESRGANUpscaler(BasePlugin):
name = "RealESRGAN"
support_gen_image = True
def __init__(self, name, device, no_half=False):
super().__init__()
@ -77,13 +80,14 @@ class RealESRGANUpscaler(BasePlugin):
device=device,
)
def __call__(self, rgb_np_img, req: RunPluginRequest):
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
logger.info(f"RealESRGAN input shape: {bgr_np_img.shape}, scale: {req.scale}")
result = self.forward(bgr_np_img, req.scale)
logger.info(f"RealESRGAN output shape: {result.shape}")
return result
@torch.inference_mode()
def forward(self, bgr_np_img, scale: float):
# 输出是 BGR
upsampled = self.model.enhance(bgr_np_img, outscale=scale)[0]

View File

@ -9,6 +9,8 @@ from lama_cleaner.schema import RunPluginRequest
class RemoveBG(BasePlugin):
name = "RemoveBG"
support_gen_mask = True
support_gen_image = True
def __init__(self):
super().__init__()
@ -20,17 +22,24 @@ class RemoveBG(BasePlugin):
self.session = new_session(model_name="u2net")
def __call__(self, rgb_np_img, req: RunPluginRequest):
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
return self.forward(bgr_np_img)
def forward(self, bgr_np_img) -> np.ndarray:
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
from rembg import remove
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
# return BGRA image
output = remove(bgr_np_img, session=self.session)
return cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
from rembg import remove
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
# return BGR image, 255 means foreground, 0 means background
output = remove(bgr_np_img, session=self.session, only_mask=True)
return output
def check_dep(self):
try:
import rembg

View File

@ -1,4 +1,5 @@
import cv2
import numpy as np
from loguru import logger
from lama_cleaner.helper import download_model
@ -8,6 +9,7 @@ from lama_cleaner.schema import RunPluginRequest
class RestoreFormerPlugin(BasePlugin):
name = "RestoreFormer"
support_gen_image = True
def __init__(self, device, upscaler=None):
super().__init__()
@ -32,7 +34,7 @@ class RestoreFormerPlugin(BasePlugin):
bg_upsampler=upscaler.model if upscaler is not None else None,
)
def __call__(self, rgb_np_img, req: RunPluginRequest):
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
weight = 0.5
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
logger.info(f"RestoreFormer input shape: {bgr_np_img.shape}")

View File

@ -3,12 +3,17 @@ from enum import Enum
from pathlib import Path
from typing import Optional, Literal, List
from PIL.Image import Image
from pydantic import BaseModel, Field, validator, field_validator
from pydantic import BaseModel, Field, field_validator
from lama_cleaner.const import Device, InteractiveSegModel, RealESRGANModel
class PluginInfo(BaseModel):
name: str
support_gen_image: bool = False
support_gen_mask: bool = False
class CV2Flag(str, Enum):
INPAINT_NS = "INPAINT_NS"
INPAINT_TELEA = "INPAINT_TELEA"
@ -272,7 +277,7 @@ class GenInfoResponse(BaseModel):
class ServerConfigResponse(BaseModel):
plugins: List[str]
plugins: List[PluginInfo]
enableFileManager: bool
enableAutoSaving: bool
enableControlnet: bool

View File

@ -3,7 +3,7 @@ import os
import time
from PIL import Image
from lama_cleaner.helper import encode_pil_to_base64
from lama_cleaner.helper import encode_pil_to_base64, gen_frontend_mask
from lama_cleaner.plugins.anime_seg import AnimeSeg
from lama_cleaner.schema import RunPluginRequest
from lama_cleaner.tests.utils import check_device, current_dir, save_dir
@ -35,34 +35,48 @@ def _save(img, name):
def test_remove_bg():
model = RemoveBG()
rgba_np_img = model(
rgba_np_img = model.gen_image(
rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
)
res = cv2.cvtColor(rgba_np_img, cv2.COLOR_RGBA2BGRA)
_save(res, "test_remove_bg.png")
bgr_np_img = model.gen_mask(
rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
)
res_mask = gen_frontend_mask(bgr_np_img)
_save(res_mask, "test_remove_bg_frontend_mask.png")
assert len(bgr_np_img.shape) == 2
_save(bgr_np_img, "test_remove_bg_mask.jpeg")
def test_anime_seg():
model = AnimeSeg()
img = cv2.imread(str(current_dir / "anime_test.png"))
img_base64 = encode_pil_to_base64(Image.fromarray(img), 100, {})
res = model(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
res = model.gen_image(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
assert len(res.shape) == 3
assert res.shape[-1] == 4
_save(res, "test_anime_seg.png")
res = model.gen_mask(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
assert len(res.shape) == 2
_save(res, "test_anime_seg_mask.png")
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
def test_upscale(device):
check_device(device)
model = RealESRGANUpscaler("realesr-general-x4v3", device)
res = model(
res = model.gen_image(
rgb_img,
RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=2),
)
_save(res, f"test_upscale_x2_{device}.png")
res = model(
res = model.gen_image(
rgb_img,
RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=4),
)
@ -73,7 +87,9 @@ def test_upscale(device):
def test_gfpgan(device):
check_device(device)
model = GFPGANPlugin(device)
res = model(rgb_img, RunPluginRequest(name=GFPGANPlugin.name, image=rgb_img_base64))
res = model.gen_image(
rgb_img, RunPluginRequest(name=GFPGANPlugin.name, image=rgb_img_base64)
)
_save(res, f"test_gfpgan_{device}.png")
@ -81,7 +97,7 @@ def test_gfpgan(device):
def test_restoreformer(device):
check_device(device)
model = RestoreFormerPlugin(device)
res = model(
res = model.gen_image(
rgb_img, RunPluginRequest(name=RestoreFormerPlugin.name, image=rgb_img_base64)
)
_save(res, f"test_restoreformer_{device}.png")
@ -91,7 +107,7 @@ def test_restoreformer(device):
def test_segment_anything(device):
check_device(device)
model = InteractiveSeg("vit_l", device)
new_mask = model(
new_mask = model.gen_mask(
rgb_img,
RunPluginRequest(
name=InteractiveSeg.name,

View File

@ -3,7 +3,7 @@
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Lama Cleaner</title>
<title>IOPaint</title>
</head>
<body>
<div id="root"></div>

View File

@ -272,7 +272,7 @@ export default function Editor(props: EditorProps) {
console.log("[useEffect] centerView")
// render 改变尺寸以后undo/redo 重新 center
viewportRef?.current?.centerView(minScale, 1)
}, [context?.canvas.height, context?.canvas.width, viewportRef, minScale])
}, [imageHeight, imageWidth, viewportRef, minScale])
// Zoom reset
const resetZoom = useCallback(() => {
@ -358,6 +358,7 @@ export default function Editor(props: EditorProps) {
const targetFile = await getCurrentRender()
try {
const res = await runPlugin(
true,
PluginName.InteractiveSeg,
targetFile,
undefined,

View File

@ -16,6 +16,7 @@ import {
Smile,
} from "lucide-react"
import { useStore } from "@/lib/states"
import { PluginInfo } from "@/lib/types"
export enum PluginName {
RemoveBG = "RemoveBG",
@ -26,6 +27,7 @@ export enum PluginName {
InteractiveSeg = "InteractiveSeg",
}
// TODO: get plugin config from server and using form-render??
const pluginMap = {
[PluginName.RemoveBG]: {
IconClass: Slice,
@ -37,7 +39,7 @@ const pluginMap = {
},
[PluginName.RealESRGAN]: {
IconClass: Fullscreen,
showName: "RealESRGAN 4x",
showName: "RealESRGAN",
},
[PluginName.GFPGAN]: {
IconClass: Smile,
@ -67,11 +69,11 @@ const Plugins = () => {
return null
}
const onPluginClick = (pluginName: string) => {
const onPluginClick = (genMask: boolean, pluginName: string) => {
if (pluginName === PluginName.InteractiveSeg) {
updateInteractiveSegState({ isInteractiveSeg: true })
} else {
runRenderablePlugin(pluginName)
runRenderablePlugin(genMask, pluginName)
}
}
@ -87,14 +89,14 @@ const Plugins = () => {
<DropdownMenuSubContent>
<DropdownMenuItem
onClick={() =>
runRenderablePlugin(PluginName.RealESRGAN, { upscale: 2 })
runRenderablePlugin(false, PluginName.RealESRGAN, { upscale: 2 })
}
>
upscale 2x
</DropdownMenuItem>
<DropdownMenuItem
onClick={() =>
runRenderablePlugin(PluginName.RealESRGAN, { upscale: 4 })
runRenderablePlugin(false, PluginName.RealESRGAN, { upscale: 4 })
}
>
upscale 4x
@ -104,16 +106,44 @@ const Plugins = () => {
)
}
const renderGenImageAndMaskPlugin = (plugin: PluginInfo) => {
const { IconClass, showName } = pluginMap[plugin.name as PluginName]
return (
<DropdownMenuSub key={plugin.name}>
<DropdownMenuSubTrigger disabled={disabled}>
<div className="flex gap-2 items-center">
<IconClass className="p-1" />
{showName}
</div>
</DropdownMenuSubTrigger>
<DropdownMenuSubContent>
<DropdownMenuItem onClick={() => onPluginClick(false, plugin.name)}>
Remove Background
</DropdownMenuItem>
<DropdownMenuItem onClick={() => onPluginClick(true, plugin.name)}>
Generate Mask
</DropdownMenuItem>
</DropdownMenuSubContent>
</DropdownMenuSub>
)
}
const renderPlugins = () => {
return plugins.map((plugin: string) => {
const { IconClass, showName } = pluginMap[plugin as PluginName]
if (plugin === PluginName.RealESRGAN) {
return plugins.map((plugin: PluginInfo) => {
const { IconClass, showName } = pluginMap[plugin.name as PluginName]
if (plugin.name === PluginName.RealESRGAN) {
return renderRealESRGANPlugin()
}
if (
plugin.name === PluginName.RemoveBG ||
plugin.name === PluginName.AnimeSeg
) {
return renderGenImageAndMaskPlugin(plugin)
}
return (
<DropdownMenuItem
key={plugin}
onClick={() => onPluginClick(plugin)}
key={plugin.name}
onClick={() => onPluginClick(false, plugin.name)}
disabled={disabled}
>
<div className="flex gap-2 items-center">

View File

@ -64,11 +64,6 @@ export function Shortcuts() {
<ShortCut content="Decrease Brush Size" keys={["["]} />
<ShortCut content="Increase Brush Size" keys={["]"]} />
<ShortCut content="View Original Image" keys={["Hold Tab"]} />
<ShortCut
content="Multi-Stroke Drawing"
keys={[`Hold ${CmdOrCtrl()}`]}
/>
<ShortCut content="Cancel Drawing" keys={["Esc"]} />
<ShortCut content="Undo" keys={[CmdOrCtrl(), "Z"]} />
<ShortCut content="Redo" keys={[CmdOrCtrl(), "Shift", "Z"]} />

View File

@ -658,13 +658,13 @@ const DiffusionOptions = () => {
updateSettings({ sdSampler: value })
}}
>
<SelectTrigger className="w-[180px]">
<SelectTrigger className="w-[175px] text-xs">
<SelectValue placeholder="Select sampler" />
</SelectTrigger>
<SelectContent align="end">
<SelectGroup>
{samplers.map((sampler) => (
<SelectItem key={sampler} value={sampler}>
<SelectItem key={sampler} value={sampler} className="text-xs">
{sampler}
</SelectItem>
))}

View File

@ -17,6 +17,7 @@ const ToastViewport = React.forwardRef<
"fixed top-0 z-[100] flex max-h-screen w-full flex-col-reverse p-4 sm:bottom-0 sm:right-0 sm:top-auto sm:flex-col md:max-w-[420px]",
className
)}
tabIndex={-1}
{...props}
/>
))
@ -47,6 +48,7 @@ const Toast = React.forwardRef<
<ToastPrimitives.Root
ref={ref}
className={cn(toastVariants({ variant }), className)}
tabIndex={-1}
{...props}
/>
)
@ -63,6 +65,7 @@ const ToastAction = React.forwardRef<
"inline-flex h-8 shrink-0 items-center justify-center rounded-md border bg-transparent px-3 text-sm font-medium transition-colors hover:bg-secondary focus:outline-none focus:ring-1 focus:ring-ring disabled:pointer-events-none disabled:opacity-50 group-[.destructive]:border-muted/40 group-[.destructive]:hover:border-destructive/30 group-[.destructive]:hover:bg-destructive group-[.destructive]:hover:text-destructive-foreground group-[.destructive]:focus:ring-destructive",
className
)}
tabIndex={-1}
{...props}
/>
))
@ -79,6 +82,7 @@ const ToastClose = React.forwardRef<
className
)}
toast-close=""
tabIndex={-1}
{...props}
>
<Cross2Icon className="h-4 w-4" />
@ -93,6 +97,7 @@ const ToastTitle = React.forwardRef<
<ToastPrimitives.Title
ref={ref}
className={cn("text-sm font-semibold [&+div]:text-xs", className)}
tabIndex={-1}
{...props}
/>
))
@ -106,6 +111,7 @@ const ToastDescription = React.forwardRef<
ref={ref}
className={cn("text-sm opacity-90", className)}
{...props}
tabIndex={-1}
/>
))
ToastDescription.displayName = ToastPrimitives.Description.displayName

View File

@ -114,13 +114,15 @@ export function fetchModelInfos(): Promise<ModelInfo[]> {
}
export async function runPlugin(
genMask: boolean,
name: string,
imageFile: File,
upscale?: number,
clicks?: number[][]
) {
const imageBase64 = await convertToBase64(imageFile)
const res = await fetch(`${API_ENDPOINT}/run_plugin`, {
const p = genMask ? "run_plugin_gen_mask" : "run_plugin_gen_image"
const res = await fetch(`${API_ENDPOINT}/${p}`, {
method: "POST",
headers: {
"Content-Type": "application/json",

View File

@ -156,7 +156,6 @@ type AppAction = {
setFile: (file: File) => Promise<void>
setCustomFile: (file: File) => void
setIsInpainting: (newValue: boolean) => void
setIsPluginRunning: (newValue: boolean) => void
getIsProcessing: () => boolean
setBaseBrushSize: (newValue: number) => void
getBrushSize: () => number
@ -190,6 +189,7 @@ type AppAction = {
showPrevMask: () => Promise<void>
hidePrevMask: () => void
runRenderablePlugin: (
genMask: boolean,
pluginName: string,
params?: PluginParams
) => Promise<void>
@ -521,19 +521,27 @@ export const useStore = createWithEqualityFn<AppState & AppAction>()(
},
runRenderablePlugin: async (
genMask: boolean,
pluginName: string,
params: PluginParams = { upscale: 1 }
) => {
const { renders, lineGroups } = get().editorState
set((state) => {
state.isInpainting = true
state.isPluginRunning = true
})
try {
const start = new Date()
const targetFile = await get().getCurrentTargetFile()
const res = await runPlugin(pluginName, targetFile, params.upscale)
const res = await runPlugin(
genMask,
pluginName,
targetFile,
params.upscale
)
const { blob } = res
if (!genMask) {
const newRender = new Image()
await loadImage(newRender, blob)
get().setImageSize(newRender.width, newRender.height)
@ -543,6 +551,13 @@ export const useStore = createWithEqualityFn<AppState & AppAction>()(
renders: newRenders,
lineGroups: newLineGroups,
})
} else {
const newMask = new Image()
await loadImage(newMask, blob)
get().updateInteractiveSegState({
interactiveSegMask: newMask,
})
}
const end = new Date()
const time = end.getTime() - start.getTime()
toast({
@ -555,7 +570,7 @@ export const useStore = createWithEqualityFn<AppState & AppAction>()(
})
}
set((state) => {
state.isInpainting = false
state.isPluginRunning = false
})
},
@ -803,11 +818,6 @@ export const useStore = createWithEqualityFn<AppState & AppAction>()(
state.isInpainting = newValue
}),
setIsPluginRunning: (newValue: boolean) =>
set((state) => {
state.isPluginRunning = newValue
}),
setFile: async (file: File) => {
if (get().settings.enableAutoExtractPrompt) {
try {

View File

@ -6,8 +6,14 @@ export interface Filename {
mtime: number
}
export interface PluginInfo {
name: string
support_gen_image: boolean
support_gen_mask: boolean
}
export interface ServerConfig {
plugins: string[]
plugins: PluginInfo[]
enableFileManager: boolean
enableAutoSaving: boolean
enableControlnet: boolean