add gfpgan
This commit is contained in:
parent
e7c7896bfa
commit
b200db920b
@ -598,6 +598,15 @@ export default function Editor() {
|
||||
}
|
||||
}, [runRenderablePlugin])
|
||||
|
||||
useEffect(() => {
|
||||
emitter.on(PluginName.GFPGAN, () => {
|
||||
runRenderablePlugin(PluginName.GFPGAN)
|
||||
})
|
||||
return () => {
|
||||
emitter.off(PluginName.GFPGAN)
|
||||
}
|
||||
}, [runRenderablePlugin])
|
||||
|
||||
useEffect(() => {
|
||||
emitter.on(PluginName.RealESRGAN, (data: any) => {
|
||||
runRenderablePlugin(PluginName.RealESRGAN, data)
|
||||
|
@ -4,6 +4,7 @@ import { CursorArrowRaysIcon, GifIcon } from '@heroicons/react/24/outline'
|
||||
import {
|
||||
BoxModelIcon,
|
||||
ChevronRightIcon,
|
||||
FaceIcon,
|
||||
HobbyKnifeIcon,
|
||||
MixIcon,
|
||||
} from '@radix-ui/react-icons'
|
||||
@ -20,6 +21,7 @@ import Button from '../shared/Button'
|
||||
export enum PluginName {
|
||||
RemoveBG = 'RemoveBG',
|
||||
RealESRGAN = 'RealESRGAN',
|
||||
GFPGAN = 'GFPGAN',
|
||||
InteractiveSeg = 'InteractiveSeg',
|
||||
MakeGIF = 'MakeGIF',
|
||||
}
|
||||
@ -33,6 +35,10 @@ const pluginMap = {
|
||||
IconClass: BoxModelIcon,
|
||||
showName: 'RealESRGAN 4x',
|
||||
},
|
||||
[PluginName.GFPGAN]: {
|
||||
IconClass: FaceIcon,
|
||||
showName: 'GFPGAN',
|
||||
},
|
||||
[PluginName.InteractiveSeg]: {
|
||||
IconClass: CursorArrowRaysIcon,
|
||||
showName: 'Interactive Seg',
|
||||
|
@ -327,28 +327,46 @@ def run_plugin():
|
||||
return "Plugin not found", 500
|
||||
|
||||
origin_image_bytes = files["image"].read() # RGB
|
||||
rgb_np_img, _ = load_img(origin_image_bytes)
|
||||
rgb_np_img, alpha_channel, exif = load_img(origin_image_bytes, return_exif=True)
|
||||
|
||||
start = time.time()
|
||||
res = plugins[name](rgb_np_img, files, form)
|
||||
bgr_res = plugins[name](rgb_np_img, files, form)
|
||||
logger.info(f"{name} process time: {(time.time() - start) * 1000}ms")
|
||||
torch_gc()
|
||||
|
||||
if name == MakeGIF.name:
|
||||
filename = form["filename"]
|
||||
return send_file(
|
||||
io.BytesIO(res),
|
||||
io.BytesIO(bgr_res),
|
||||
mimetype="image/gif",
|
||||
as_attachment=True,
|
||||
attachment_filename=filename,
|
||||
attachment_filename=form["filename"],
|
||||
)
|
||||
|
||||
if name == RemoveBG.name:
|
||||
rgb_res = cv2.cvtColor(bgr_res, cv2.COLOR_BGRA2RGBA)
|
||||
ext = "png"
|
||||
else:
|
||||
response = make_response(
|
||||
send_file(
|
||||
io.BytesIO(numpy_to_bytes(res, "png")),
|
||||
mimetype=f"image/png",
|
||||
rgb_res = cv2.cvtColor(bgr_res, cv2.COLOR_BGR2RGB)
|
||||
ext = get_image_ext(origin_image_bytes)
|
||||
if alpha_channel is not None:
|
||||
if alpha_channel.shape[:2] != rgb_res.shape[:2]:
|
||||
alpha_channel = cv2.resize(
|
||||
alpha_channel, dsize=(rgb_res.shape[1], rgb_res.shape[0])
|
||||
)
|
||||
rgb_res = np.concatenate(
|
||||
(rgb_res, alpha_channel[:, :, np.newaxis]), axis=-1
|
||||
)
|
||||
|
||||
response = make_response(
|
||||
send_file(
|
||||
io.BytesIO(
|
||||
pil_to_bytes(
|
||||
Image.fromarray(rgb_res), ext, quality=image_quality, exif=exif
|
||||
)
|
||||
),
|
||||
mimetype=f"image/{ext}",
|
||||
)
|
||||
)
|
||||
return response
|
||||
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
|
@ -1,27 +1,46 @@
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import pytest
|
||||
import torch.cuda
|
||||
|
||||
from lama_cleaner.plugins import RemoveBG, RealESRGANUpscaler
|
||||
from lama_cleaner.plugins import RemoveBG, RealESRGANUpscaler, GFPGANPlugin
|
||||
|
||||
current_dir = Path(__file__).parent.absolute().resolve()
|
||||
save_dir = current_dir / "result"
|
||||
save_dir.mkdir(exist_ok=True, parents=True)
|
||||
img_p = current_dir / "bunny.jpeg"
|
||||
bgr_img = cv2.imread(str(img_p))
|
||||
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
||||
|
||||
|
||||
def _save(img, name):
|
||||
cv2.imwrite(str(save_dir / name), img)
|
||||
|
||||
|
||||
def test_remove_bg():
|
||||
model = RemoveBG()
|
||||
img = cv2.imread(str(img_p))
|
||||
res = model.forward(img)
|
||||
cv2.imwrite(str(save_dir / "test_remove_bg.png"), res)
|
||||
res = model.forward(bgr_img)
|
||||
_save(res, "test_remove_bg.png")
|
||||
|
||||
|
||||
def test_upscale():
|
||||
model = RealESRGANUpscaler("cpu")
|
||||
img = cv2.imread(str(img_p))
|
||||
res = model.forward(img, 2)
|
||||
cv2.imwrite(str(save_dir / "test_upscale_x2.png"), res)
|
||||
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||
def test_upscale(device):
|
||||
if device == "cuda" and not torch.cuda.is_available():
|
||||
return
|
||||
|
||||
res = model.forward(img, 4)
|
||||
cv2.imwrite(str(save_dir / "test_upscale_x4.png"), res)
|
||||
model = RealESRGANUpscaler("realesr-general-x4v3", device)
|
||||
res = model.forward(bgr_img, 2)
|
||||
_save(res, "test_upscale_x2.png")
|
||||
|
||||
res = model.forward(bgr_img, 4)
|
||||
_save(res, "test_upscale_x4.png")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||
def test_gfpgan(device):
|
||||
if device == "cuda" and not torch.cuda.is_available():
|
||||
return
|
||||
model = GFPGANPlugin(device)
|
||||
res = model(rgb_img, None, None)
|
||||
_save(res, "test_gfpgan.png")
|
||||
|
Loading…
Reference in New Issue
Block a user