diff --git a/iopaint/helper.py b/iopaint/helper.py index 9d08996..1c99dcf 100644 --- a/iopaint/helper.py +++ b/iopaint/helper.py @@ -43,7 +43,10 @@ def get_cache_path_by_url(url): def download_model(url, model_md5: str = None): - cached_file = get_cache_path_by_url(url) + if os.path.exists(url): + cached_file = url + else: + cached_file = get_cache_path_by_url(url) if not os.path.exists(cached_file): sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = None diff --git a/iopaint/plugins/interactive_seg.py b/iopaint/plugins/interactive_seg.py index f19a3a8..a270991 100644 --- a/iopaint/plugins/interactive_seg.py +++ b/iopaint/plugins/interactive_seg.py @@ -8,6 +8,7 @@ from loguru import logger from iopaint.helper import download_model from iopaint.plugins.base_plugin import BasePlugin from iopaint.plugins.segment_anything import SamPredictor, sam_model_registry +from iopaint.plugins.segment_anything.predictor_hq import SamHQPredictor from iopaint.schema import RunPluginRequest # 从小到大 @@ -28,6 +29,18 @@ SEGMENT_ANYTHING_MODELS = { "url": "https://github.com/Sanster/models/releases/download/MobileSAM/mobile_sam.pt", "md5": "f3c0d8cda613564d499310dab6c812cd", }, + "sam_hq_vit_b": { + "url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_b.pth", + "md5": "c6b8953247bcfdc8bb8ef91e36a6cacc", + }, + "sam_hq_vit_l": { + "url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth", + "md5": "08947267966e4264fb39523eccc33f86", + }, + "sam_hq_vit_h": { + "url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth", + "md5": "3560f6b6a5a6edacd814a1325c39640a", + }, } @@ -47,9 +60,14 @@ class InteractiveSeg(BasePlugin): SEGMENT_ANYTHING_MODELS[model_name]["md5"], ) logger.info(f"SegmentAnything model path: {model_path}") - self.predictor = SamPredictor( - sam_model_registry[model_name](checkpoint=model_path).to(self.device) - ) + if "sam_hq" in model_name: + self.predictor = SamHQPredictor( + sam_model_registry[model_name](checkpoint=model_path).to(self.device) + ) + else: + self.predictor = SamPredictor( + sam_model_registry[model_name](checkpoint=model_path).to(self.device) + ) self.prev_img_md5 = None def switch_model(self, new_model_name): diff --git a/iopaint/plugins/segment_anything/__init__.py b/iopaint/plugins/segment_anything/__init__.py index 66b540c..420f04b 100644 --- a/iopaint/plugins/segment_anything/__init__.py +++ b/iopaint/plugins/segment_anything/__init__.py @@ -5,10 +5,12 @@ # LICENSE file in the root directory of this source tree. from .build_sam import ( - build_sam, build_sam_vit_h, build_sam_vit_l, build_sam_vit_b, + build_sam_vit_h_hq, + build_sam_vit_l_hq, + build_sam_vit_b_hq, sam_model_registry, ) from .predictor import SamPredictor diff --git a/iopaint/plugins/segment_anything/build_sam.py b/iopaint/plugins/segment_anything/build_sam.py index f8dea8e..9b905ef 100644 --- a/iopaint/plugins/segment_anything/build_sam.py +++ b/iopaint/plugins/segment_anything/build_sam.py @@ -17,6 +17,9 @@ from .modeling import ( Sam, TwoWayTransformer, ) +from .modeling.image_encoder_hq import ImageEncoderViTHQ +from .modeling.mask_decoder import MaskDecoderHQ +from .modeling.sam_hq import SamHQ def build_sam_vit_h(checkpoint=None): @@ -29,9 +32,6 @@ def build_sam_vit_h(checkpoint=None): ) -build_sam = build_sam_vit_h - - def build_sam_vit_l(checkpoint=None): return _build_sam( encoder_embed_dim=1024, @@ -104,11 +104,44 @@ def build_sam_vit_t(checkpoint=None): return mobile_sam +def build_sam_vit_h_hq(checkpoint=None): + return _build_sam_hq( + encoder_embed_dim=1280, + encoder_depth=32, + encoder_num_heads=16, + encoder_global_attn_indexes=[7, 15, 23, 31], + checkpoint=checkpoint, + ) + + +def build_sam_vit_l_hq(checkpoint=None): + return _build_sam_hq( + encoder_embed_dim=1024, + encoder_depth=24, + encoder_num_heads=16, + encoder_global_attn_indexes=[5, 11, 17, 23], + checkpoint=checkpoint, + ) + + +def build_sam_vit_b_hq(checkpoint=None): + return _build_sam_hq( + encoder_embed_dim=768, + encoder_depth=12, + encoder_num_heads=12, + encoder_global_attn_indexes=[2, 5, 8, 11], + checkpoint=checkpoint, + ) + + sam_model_registry = { - "default": build_sam, - "vit_h": build_sam, + "default": build_sam_vit_h, + "vit_h": build_sam_vit_h, "vit_l": build_sam_vit_l, "vit_b": build_sam_vit_b, + "sam_hq_vit_h": build_sam_vit_h_hq, + "sam_hq_vit_l": build_sam_vit_l_hq, + "sam_hq_vit_b": build_sam_vit_b_hq, "mobile_sam": build_sam_vit_t, } @@ -166,3 +199,71 @@ def _build_sam( state_dict = torch.load(f) sam.load_state_dict(state_dict) return sam + + +def _build_sam_hq( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + sam = SamHQ( + image_encoder=ImageEncoderViTHQ( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ), + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ), + mask_decoder=MaskDecoderHQ( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + vit_dim=encoder_embed_dim, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + device = "cuda" if torch.cuda.is_available() else "cpu" + state_dict = torch.load(f, map_location=device) + info = sam.load_state_dict(state_dict, strict=False) + print(info) + for n, p in sam.named_parameters(): + if ( + "hf_token" not in n + and "hf_mlp" not in n + and "compress_vit_feat" not in n + and "embedding_encoder" not in n + and "embedding_maskfeature" not in n + ): + p.requires_grad = False + + return sam diff --git a/iopaint/plugins/segment_anything/modeling/image_encoder_hq.py b/iopaint/plugins/segment_anything/modeling/image_encoder_hq.py new file mode 100644 index 0000000..f12803b --- /dev/null +++ b/iopaint/plugins/segment_anything/modeling/image_encoder_hq.py @@ -0,0 +1,422 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from typing import Optional, Tuple, Type + +from .common import LayerNorm2d, MLPBlock + + +# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa +class ImageEncoderViTHQ(nn.Module): + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4.0, + out_chans: int = 256, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + global_attn_indexes: Tuple[int, ...] = (), + ) -> None: + """ + Args: + img_size (int): Input image size. + patch_size (int): Patch size. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + depth (int): Depth of ViT. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_abs_pos (bool): If True, use absolute positional embeddings. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. + global_attn_indexes (list): Indexes for blocks using global attention. + """ + super().__init__() + self.img_size = img_size + + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + self.pos_embed: Optional[nn.Parameter] = None + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros( + 1, img_size // patch_size, img_size // patch_size, embed_dim + ) + ) + + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=(img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + out_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(out_chans), + nn.Conv2d( + out_chans, + out_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(out_chans), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + + interm_embeddings = [] + for blk in self.blocks: + x = blk(x) + if blk.window_size == 0: + interm_embeddings.append(x) + + x = self.neck(x.permute(0, 3, 1, 2)) + + return x, interm_embeddings + + +class Block(nn.Module): + """Transformer blocks with support of window attention and residual propagation blocks""" + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. If it equals 0, then + use global attention. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + input_size=input_size if window_size == 0 else (window_size, window_size), + ) + + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock( + embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer + ) + + self.window_size = window_size + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + + +class Attention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = ( + self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + ) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos( + attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W) + ) + + attn = attn.softmax(dim=-1) + x = ( + (attn @ v) + .view(B, self.num_heads, H, W, -1) + .permute(0, 2, 3, 1, 4) + .reshape(B, H, W, -1) + ) + x = self.proj(x) + + return x + + +def window_partition( + x: torch.Tensor, window_size: int +) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows, (Hp, Wp) + + +def window_unpartition( + windows: torch.Tensor, + window_size: int, + pad_hw: Tuple[int, int], + hw: Tuple[int, int], +) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view( + B, Hp // window_size, Wp // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_rel_pos( + attn: torch.Tensor, + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 + Args: + attn (Tensor): attention map. + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn = ( + attn.view(B, q_h, q_w, k_h, k_w) + + rel_h[:, :, :, :, None] + + rel_w[:, :, :, None, :] + ).view(B, q_h * q_w, k_h * k_w) + + return attn + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, int] = (16, 16), + stride: Tuple[int, int] = (16, 16), + padding: Tuple[int, int] = (0, 0), + in_chans: int = 3, + embed_dim: int = 768, + ) -> None: + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + """ + super().__init__() + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/iopaint/plugins/segment_anything/modeling/mask_decoder.py b/iopaint/plugins/segment_anything/modeling/mask_decoder.py index 3e86f7c..67e0f77 100644 --- a/iopaint/plugins/segment_anything/modeling/mask_decoder.py +++ b/iopaint/plugins/segment_anything/modeling/mask_decoder.py @@ -51,10 +51,14 @@ class MaskDecoder(nn.Module): self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.output_upscaling = nn.Sequential( - nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), LayerNorm2d(transformer_dim // 4), activation(), - nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( @@ -118,8 +122,12 @@ class MaskDecoder(nn.Module): ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens - output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) - output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) + output_tokens = torch.cat( + [self.iou_token.weight, self.mask_tokens.weight], dim=0 + ) + output_tokens = output_tokens.unsqueeze(0).expand( + sparse_prompt_embeddings.size(0), -1, -1 + ) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask @@ -138,7 +146,9 @@ class MaskDecoder(nn.Module): upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): - hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) + hyper_in_list.append( + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) + ) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) @@ -148,6 +158,230 @@ class MaskDecoder(nn.Module): return masks, iou_pred +# https://github.com/SysCV/sam-hq/blob/main/segment_anything/modeling/mask_decoder_hq.py#L17 +class MaskDecoderHQ(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + vit_dim: int = 1024, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), + activation(), + ) + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth + ) + + # HQ-SAM parameters + self.hf_token = nn.Embedding(1, transformer_dim) # HQ-Ouptput-Token + self.hf_mlp = MLP( + transformer_dim, transformer_dim, transformer_dim // 8, 3 + ) # corresponding new MLP layer for HQ-Ouptput-Token + self.num_mask_tokens = self.num_mask_tokens + 1 + + # three conv fusion layers for obtaining HQ-Feature + self.compress_vit_feat = nn.Sequential( + nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2), + LayerNorm2d(transformer_dim), + nn.GELU(), + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 8, kernel_size=2, stride=2 + ), + ) + + self.embedding_encoder = nn.Sequential( + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), + LayerNorm2d(transformer_dim // 4), + nn.GELU(), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), + ) + self.embedding_maskfeature = nn.Sequential( + nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), + LayerNorm2d(transformer_dim // 4), + nn.GELU(), + nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1), + ) + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + hq_token_only: bool, + interm_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the ViT image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + """ + vit_features = interm_embeddings[0].permute( + 0, 3, 1, 2 + ) # early-layer ViT feature, after 1st global attention block in ViT + hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat( + vit_features + ) + + masks, iou_pred = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + hq_features=hq_features, + ) + + # Select the correct mask or masks for output + if multimask_output: + # mask with highest score + mask_slice = slice(1, self.num_mask_tokens - 1) + iou_pred = iou_pred[:, mask_slice] + iou_pred, max_iou_idx = torch.max(iou_pred, dim=1) + iou_pred = iou_pred.unsqueeze(1) + masks_multi = masks[:, mask_slice, :, :] + masks_sam = masks_multi[ + torch.arange(masks_multi.size(0)), max_iou_idx + ].unsqueeze(1) + else: + # singale mask output, default + mask_slice = slice(0, 1) + iou_pred = iou_pred[:, mask_slice] + masks_sam = masks[:, mask_slice] + + masks_hq = masks[:, slice(self.num_mask_tokens - 1, self.num_mask_tokens)] + if hq_token_only: + masks = masks_hq + else: + masks = masks_sam + masks_hq + # Prepare output + return masks, iou_pred + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + hq_features: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + output_tokens = torch.cat( + [self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], + dim=0, + ) + output_tokens = output_tokens.unsqueeze(0).expand( + sparse_prompt_embeddings.size(0), -1, -1 + ) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + src = src + dense_prompt_embeddings + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + + upscaled_embedding_sam = self.output_upscaling(src) + upscaled_embedding_hq = self.embedding_maskfeature( + upscaled_embedding_sam + ) + hq_features.repeat(b, 1, 1, 1) + + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + if i < self.num_mask_tokens - 1: + hyper_in_list.append( + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) + ) + else: + hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :])) + + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding_sam.shape + + masks_sam = ( + hyper_in[:, : self.num_mask_tokens - 1] + @ upscaled_embedding_sam.view(b, c, h * w) + ).view(b, -1, h, w) + masks_sam_hq = ( + hyper_in[:, self.num_mask_tokens - 1 :] + @ upscaled_embedding_hq.view(b, c, h * w) + ).view(b, -1, h, w) + masks = torch.cat([masks_sam, masks_sam_hq], dim=1) + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + return masks, iou_pred + # Lightly adapted from # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa diff --git a/iopaint/plugins/segment_anything/modeling/sam_hq.py b/iopaint/plugins/segment_anything/modeling/sam_hq.py new file mode 100644 index 0000000..d2ae3a3 --- /dev/null +++ b/iopaint/plugins/segment_anything/modeling/sam_hq.py @@ -0,0 +1,177 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from torch import nn +from torch.nn import functional as F + +from typing import Any, Dict, List, Tuple + +from .image_encoder import ImageEncoderViT +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder + + +class SamHQ(nn.Module): + mask_threshold: float = 0.0 + image_format: str = "RGB" + + def __init__( + self, + image_encoder: ImageEncoderViT, + prompt_encoder: PromptEncoder, + mask_decoder: MaskDecoder, + pixel_mean: List[float] = [123.675, 116.28, 103.53], + pixel_std: List[float] = [58.395, 57.12, 57.375], + ) -> None: + """ + SAM predicts object masks from an image and input prompts. + + Arguments: + image_encoder (ImageEncoderViT): The backbone used to encode the + image into image embeddings that allow for efficient mask prediction. + prompt_encoder (PromptEncoder): Encodes various types of input prompts. + mask_decoder (MaskDecoder): Predicts masks from the image embeddings + and encoded prompts. + pixel_mean (list(float)): Mean values for normalizing pixels in the input image. + pixel_std (list(float)): Std values for normalizing pixels in the input image. + """ + super().__init__() + self.image_encoder = image_encoder + self.prompt_encoder = prompt_encoder + self.mask_decoder = mask_decoder + self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) + self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) + + @property + def device(self) -> Any: + return self.pixel_mean.device + + def forward( + self, + batched_input: List[Dict[str, Any]], + multimask_output: bool, + hq_token_only: bool =False, + ) -> List[Dict[str, torch.Tensor]]: + """ + Predicts masks end-to-end from provided images and prompts. + If prompts are not known in advance, using SamPredictor is + recommended over calling the model directly. + + Arguments: + batched_input (list(dict)): A list over input images, each a + dictionary with the following keys. A prompt key can be + excluded if it is not present. + 'image': The image as a torch tensor in 3xHxW format, + already transformed for input to the model. + 'original_size': (tuple(int, int)) The original size of + the image before transformation, as (H, W). + 'point_coords': (torch.Tensor) Batched point prompts for + this image, with shape BxNx2. Already transformed to the + input frame of the model. + 'point_labels': (torch.Tensor) Batched labels for point prompts, + with shape BxN. + 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. + Already transformed to the input frame of the model. + 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, + in the form Bx1xHxW. + multimask_output (bool): Whether the model should predict multiple + disambiguating masks, or return a single mask. + + Returns: + (list(dict)): A list over input images, where each element is + as dictionary with the following keys. + 'masks': (torch.Tensor) Batched binary mask predictions, + with shape BxCxHxW, where B is the number of input prompts, + C is determined by multimask_output, and (H, W) is the + original size of the image. + 'iou_predictions': (torch.Tensor) The model's predictions + of mask quality, in shape BxC. + 'low_res_logits': (torch.Tensor) Low resolution logits with + shape BxCxHxW, where H=W=256. Can be passed as mask input + to subsequent iterations of prediction. + """ + input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) + image_embeddings, interm_embeddings = self.image_encoder(input_images) + interm_embeddings = interm_embeddings[0] # early layer + + outputs = [] + for image_record, curr_embedding, curr_interm in zip(batched_input, image_embeddings, interm_embeddings): + if "point_coords" in image_record: + points = (image_record["point_coords"], image_record["point_labels"]) + else: + points = None + sparse_embeddings, dense_embeddings = self.prompt_encoder( + points=points, + boxes=image_record.get("boxes", None), + masks=image_record.get("mask_inputs", None), + ) + low_res_masks, iou_predictions = self.mask_decoder( + image_embeddings=curr_embedding.unsqueeze(0), + image_pe=self.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + hq_token_only=hq_token_only, + interm_embeddings=curr_interm.unsqueeze(0).unsqueeze(0), + ) + masks = self.postprocess_masks( + low_res_masks, + input_size=image_record["image"].shape[-2:], + original_size=image_record["original_size"], + ) + masks = masks > self.mask_threshold + outputs.append( + { + "masks": masks, + "iou_predictions": iou_predictions, + "low_res_logits": low_res_masks, + } + ) + return outputs + + def postprocess_masks( + self, + masks: torch.Tensor, + input_size: Tuple[int, ...], + original_size: Tuple[int, ...], + ) -> torch.Tensor: + """ + Remove padding and upscale masks to the original image size. + + Arguments: + masks (torch.Tensor): Batched masks from the mask_decoder, + in BxCxHxW format. + input_size (tuple(int, int)): The size of the image input to the + model, in (H, W) format. Used to remove padding. + original_size (tuple(int, int)): The original size of the image + before resizing for input to the model, in (H, W) format. + + Returns: + (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) + is given by original_size. + """ + masks = F.interpolate( + masks, + (self.image_encoder.img_size, self.image_encoder.img_size), + mode="bilinear", + align_corners=False, + ) + masks = masks[..., : input_size[0], : input_size[1]] + masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) + return masks + + def preprocess(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - self.pixel_mean) / self.pixel_std + + # Pad + h, w = x.shape[-2:] + padh = self.image_encoder.img_size - h + padw = self.image_encoder.img_size - w + x = F.pad(x, (0, padw, 0, padh)) + return x \ No newline at end of file diff --git a/iopaint/plugins/segment_anything/predictor_hq.py b/iopaint/plugins/segment_anything/predictor_hq.py new file mode 100644 index 0000000..d8fd50f --- /dev/null +++ b/iopaint/plugins/segment_anything/predictor_hq.py @@ -0,0 +1,292 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch + +from .modeling import Sam + +from typing import Optional, Tuple + +from .utils.transforms import ResizeLongestSide + + +class SamHQPredictor: + def __init__( + self, + sam_model: Sam, + ) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam): The model to use for mask prediction. + """ + super().__init__() + self.model = sam_model + self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) + self.reset_image() + + def set_image( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + # import pdb;pdb.set_trace() + if image_format != self.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + # import pdb;pdb.set_trace() + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[ + None, :, :, : + ] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + input_image = self.model.preprocess(transformed_image) + self.features, self.interm_features = self.model.image_encoder(input_image) + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + hq_token_only: bool = False, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor( + point_coords, dtype=torch.float, device=self.device + ) + labels_torch = torch.as_tensor( + point_labels, dtype=torch.int, device=self.device + ) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor( + mask_input, dtype=torch.float, device=self.device + ) + mask_input_torch = mask_input_torch[None, :, :, :] + + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + hq_token_only=hq_token_only, + ) + + masks_np = masks[0].detach().cpu().numpy() + iou_predictions_np = iou_predictions[0].detach().cpu().numpy() + low_res_masks_np = low_res_masks[0].detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + hq_token_only: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + if point_coords is not None: + points = (point_coords, point_labels) + else: + points = None + + # Embed prompts + sparse_embeddings, dense_embeddings = self.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + + # Predict masks + low_res_masks, iou_predictions = self.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + hq_token_only=hq_token_only, + interm_embeddings=self.interm_features, + ) + + # Upscale the masks to the original image resolution + masks = self.model.postprocess_masks( + low_res_masks, self.input_size, self.original_size + ) + + if not return_logits: + masks = masks > self.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert ( + self.features is not None + ), "Features must exist if an image has been set." + return self.features + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None diff --git a/iopaint/schema.py b/iopaint/schema.py index 3e31d77..c8ba9ca 100644 --- a/iopaint/schema.py +++ b/iopaint/schema.py @@ -146,6 +146,9 @@ class InteractiveSegModel(Choices): vit_b = "vit_b" vit_l = "vit_l" vit_h = "vit_h" + sam_hq_vit_b = "sam_hq_vit_b" + sam_hq_vit_l = "sam_hq_vit_l" + sam_hq_vit_h = "sam_hq_vit_h" mobile_sam = "mobile_sam" @@ -394,6 +397,15 @@ class InpaintRequest(BaseModel): return 0 return v + @field_validator("sd_strength") + @classmethod + def validate_sd_strength(cls, v: float, values): + use_extender = values.data["use_extender"] + if use_extender: + logger.info(f"Extender is enabled, set sd_strength=1") + return 1.0 + return v + class RunPluginRequest(BaseModel): name: str diff --git a/iopaint/tests/test_plugins.py b/iopaint/tests/test_plugins.py index 77efdbe..aa7d367 100644 --- a/iopaint/tests/test_plugins.py +++ b/iopaint/tests/test_plugins.py @@ -5,7 +5,7 @@ from PIL import Image from iopaint.helper import encode_pil_to_base64, gen_frontend_mask from iopaint.plugins.anime_seg import AnimeSeg -from iopaint.schema import RunPluginRequest, RemoveBGModel +from iopaint.schema import RunPluginRequest, RemoveBGModel, InteractiveSegModel from iopaint.tests.utils import check_device, current_dir, save_dir os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" @@ -103,10 +103,11 @@ def test_restoreformer(device): _save(res, f"test_restoreformer_{device}.png") +@pytest.mark.parametrize("name", InteractiveSegModel.values()) @pytest.mark.parametrize("device", ["cuda", "cpu", "mps"]) -def test_segment_anything(device): +def test_segment_anything(name, device): check_device(device) - model = InteractiveSeg("vit_l", device) + model = InteractiveSeg(name, device) new_mask = model.gen_mask( rgb_img, RunPluginRequest( @@ -116,5 +117,5 @@ def test_segment_anything(device): ), ) - save_name = f"test_segment_anything_{device}.png" + save_name = f"test_segment_anything_{name}_{device}.png" _save(new_mask, save_name)