commit
b5c07b0dad
@ -1 +1,2 @@
|
||||
REACT_APP_INPAINTING_URL=""
|
||||
REACT_APP_INPAINTING_URL=""
|
||||
FAST_REFRESH=false
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"files": {
|
||||
"main.css": "/static/css/main.0a04cd80.chunk.css",
|
||||
"main.js": "/static/js/main.288df200.chunk.js",
|
||||
"main.js": "/static/js/main.9e3e6c89.chunk.js",
|
||||
"runtime-main.js": "/static/js/runtime-main.5e86ac81.js",
|
||||
"static/js/2.d3149f41.chunk.js": "/static/js/2.d3149f41.chunk.js",
|
||||
"index.html": "/index.html",
|
||||
@ -11,6 +11,6 @@
|
||||
"static/js/runtime-main.5e86ac81.js",
|
||||
"static/js/2.d3149f41.chunk.js",
|
||||
"static/css/main.0a04cd80.chunk.css",
|
||||
"static/js/main.288df200.chunk.js"
|
||||
"static/js/main.9e3e6c89.chunk.js"
|
||||
]
|
||||
}
|
@ -1 +1 @@
|
||||
<!doctype html><html lang="en"><head><meta charset="utf-8"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1,user-scalable=0"/><meta name="theme-color" content="#ffffff"/><title>lama-cleaner - Image inpainting powered by LaMa</title><link href="/static/css/main.0a04cd80.chunk.css" rel="stylesheet"></head><body class="h-screen"><noscript>You need to enable JavaScript to run this app.</noscript><div id="root" class="h-full"></div><script>"localhost"===location.hostname&&(self.FIREBASE_APPCHECK_DEBUG_TOKEN=!0)</script><script>!function(e){function r(r){for(var n,l,a=r[0],f=r[1],i=r[2],p=0,s=[];p<a.length;p++)l=a[p],Object.prototype.hasOwnProperty.call(o,l)&&o[l]&&s.push(o[l][0]),o[l]=0;for(n in f)Object.prototype.hasOwnProperty.call(f,n)&&(e[n]=f[n]);for(c&&c(r);s.length;)s.shift()();return u.push.apply(u,i||[]),t()}function t(){for(var e,r=0;r<u.length;r++){for(var t=u[r],n=!0,a=1;a<t.length;a++){var f=t[a];0!==o[f]&&(n=!1)}n&&(u.splice(r--,1),e=l(l.s=t[0]))}return e}var n={},o={1:0},u=[];function l(r){if(n[r])return n[r].exports;var t=n[r]={i:r,l:!1,exports:{}};return e[r].call(t.exports,t,t.exports,l),t.l=!0,t.exports}l.m=e,l.c=n,l.d=function(e,r,t){l.o(e,r)||Object.defineProperty(e,r,{enumerable:!0,get:t})},l.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},l.t=function(e,r){if(1&r&&(e=l(e)),8&r)return e;if(4&r&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(l.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&r&&"string"!=typeof e)for(var n in e)l.d(t,n,function(r){return e[r]}.bind(null,n));return t},l.n=function(e){var r=e&&e.__esModule?function(){return e.default}:function(){return e};return l.d(r,"a",r),r},l.o=function(e,r){return Object.prototype.hasOwnProperty.call(e,r)},l.p="/";var a=this["webpackJsonplama-cleaner"]=this["webpackJsonplama-cleaner"]||[],f=a.push.bind(a);a.push=r,a=a.slice();for(var i=0;i<a.length;i++)r(a[i]);var c=f;t()}([])</script><script src="/static/js/2.d3149f41.chunk.js"></script><script src="/static/js/main.288df200.chunk.js"></script></body></html>
|
||||
<!doctype html><html lang="en"><head><meta charset="utf-8"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1,user-scalable=0"/><meta name="theme-color" content="#ffffff"/><title>lama-cleaner - Image inpainting powered by LaMa</title><link href="/static/css/main.0a04cd80.chunk.css" rel="stylesheet"></head><body class="h-screen"><noscript>You need to enable JavaScript to run this app.</noscript><div id="root" class="h-full"></div><script>"localhost"===location.hostname&&(self.FIREBASE_APPCHECK_DEBUG_TOKEN=!0)</script><script>!function(e){function r(r){for(var n,l,a=r[0],f=r[1],i=r[2],p=0,s=[];p<a.length;p++)l=a[p],Object.prototype.hasOwnProperty.call(o,l)&&o[l]&&s.push(o[l][0]),o[l]=0;for(n in f)Object.prototype.hasOwnProperty.call(f,n)&&(e[n]=f[n]);for(c&&c(r);s.length;)s.shift()();return u.push.apply(u,i||[]),t()}function t(){for(var e,r=0;r<u.length;r++){for(var t=u[r],n=!0,a=1;a<t.length;a++){var f=t[a];0!==o[f]&&(n=!1)}n&&(u.splice(r--,1),e=l(l.s=t[0]))}return e}var n={},o={1:0},u=[];function l(r){if(n[r])return n[r].exports;var t=n[r]={i:r,l:!1,exports:{}};return e[r].call(t.exports,t,t.exports,l),t.l=!0,t.exports}l.m=e,l.c=n,l.d=function(e,r,t){l.o(e,r)||Object.defineProperty(e,r,{enumerable:!0,get:t})},l.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},l.t=function(e,r){if(1&r&&(e=l(e)),8&r)return e;if(4&r&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(l.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&r&&"string"!=typeof e)for(var n in e)l.d(t,n,function(r){return e[r]}.bind(null,n));return t},l.n=function(e){var r=e&&e.__esModule?function(){return e.default}:function(){return e};return l.d(r,"a",r),r},l.o=function(e,r){return Object.prototype.hasOwnProperty.call(e,r)},l.p="/";var a=this["webpackJsonplama-cleaner"]=this["webpackJsonplama-cleaner"]||[],f=a.push.bind(a);a.push=r,a=a.slice();for(var i=0;i<a.length;i++)r(a[i]);var c=f;t()}([])</script><script src="/static/js/2.d3149f41.chunk.js"></script><script src="/static/js/main.9e3e6c89.chunk.js"></script></body></html>
|
File diff suppressed because one or more lines are too long
@ -29,7 +29,9 @@
|
||||
"typescript": "4.x"
|
||||
},
|
||||
"scripts": {
|
||||
"dev": "run-p watch:css react-scripts:start",
|
||||
"dev:python": "nodemon --watch ../../* --exec python ../../main.py",
|
||||
"dev:react": "run-p watch:css react-scripts:start",
|
||||
"dev": "concurrently \"yarn dev:python\" \"yarn dev:react\"",
|
||||
"build": "run-s build:css react-scripts:build",
|
||||
"test": "react-scripts test",
|
||||
"eject": "react-scripts eject",
|
||||
@ -55,6 +57,7 @@
|
||||
},
|
||||
"devDependencies": {
|
||||
"@typescript-eslint/eslint-plugin": "^5.1.0",
|
||||
"concurrently": "^7.0.0",
|
||||
"eslint-config-airbnb": "^18.2.1",
|
||||
"eslint-config-prettier": "^8.3.0",
|
||||
"eslint-plugin-import": "^2.25.2",
|
||||
@ -62,6 +65,7 @@
|
||||
"eslint-plugin-prettier": "^4.0.0",
|
||||
"eslint-plugin-react": "^7.26.1",
|
||||
"eslint-plugin-react-hooks": "^4.2.0",
|
||||
"nodemon": "^2.0.15",
|
||||
"prettier": "^2.4.1"
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,9 @@
|
||||
import { ArrowLeftIcon } from '@heroicons/react/outline'
|
||||
import React, { useState } from 'react'
|
||||
import React, { useEffect, useState } from 'react'
|
||||
import { useToggle, useWindowSize } from 'react-use'
|
||||
import Button from './components/Button'
|
||||
import FileSelect from './components/FileSelect'
|
||||
import useInputImage from './components/hooks/useInputImage'
|
||||
import ShortcutsModal from './components/ShortcutsModal'
|
||||
import Editor from './Editor'
|
||||
|
||||
@ -31,6 +32,11 @@ function App() {
|
||||
const [file, setFile] = useState<File>()
|
||||
const [showShortcuts, toggleShowShortcuts] = useToggle(false)
|
||||
const windowSize = useWindowSize()
|
||||
const userInputImage = useInputImage()
|
||||
|
||||
useEffect(() => {
|
||||
setFile(userInputImage)
|
||||
}, [userInputImage])
|
||||
|
||||
return (
|
||||
<div className="h-full full-visible-h-safari flex flex-col">
|
||||
|
@ -1,4 +1,3 @@
|
||||
import { ArrowLeftIcon } from '@heroicons/react/outline'
|
||||
import React, { ReactNode } from 'react'
|
||||
import Modal from './Modal'
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
import React, { FocusEvent, useCallback, useEffect } from 'react'
|
||||
import React, { FocusEvent, useCallback } from 'react'
|
||||
import { Listbox } from '@headlessui/react'
|
||||
import { CheckIcon, SelectorIcon } from '@heroicons/react/solid'
|
||||
|
||||
|
22
lama_cleaner/app/src/components/hooks/useInputImage.tsx
Normal file
22
lama_cleaner/app/src/components/hooks/useInputImage.tsx
Normal file
@ -0,0 +1,22 @@
|
||||
import { useCallback, useEffect, useState } from 'react'
|
||||
|
||||
export default function useInputImage() {
|
||||
const [inputImage, setInputImage] = useState<File>()
|
||||
|
||||
const fetchInputImage = useCallback(() => {
|
||||
fetch('/inputimage')
|
||||
.then(res => res.blob())
|
||||
.then(data => {
|
||||
if (data && data.type.startsWith('image')) {
|
||||
const userInput = new File([data], 'inputImage')
|
||||
setInputImage(userInput)
|
||||
}
|
||||
})
|
||||
}, [setInputImage])
|
||||
|
||||
useEffect(() => {
|
||||
fetchInputImage()
|
||||
}, [fetchInputImage])
|
||||
|
||||
return inputImage
|
||||
}
|
25
main.py
25
main.py
@ -5,6 +5,7 @@ import io
|
||||
import multiprocessing
|
||||
import os
|
||||
import time
|
||||
import imghdr
|
||||
from typing import Union
|
||||
|
||||
import cv2
|
||||
@ -98,11 +99,26 @@ def index():
|
||||
return send_file(os.path.join(BUILD_DIR, "index.html"))
|
||||
|
||||
|
||||
@app.route('/inputimage')
|
||||
def set_input_photo():
|
||||
if input_image:
|
||||
input_file = os.path.join(os.path.dirname(__file__), input_image)
|
||||
if (os.path.exists(input_file)): # Check if file exists
|
||||
if (imghdr.what(input_file) is not None): # Check if file is image
|
||||
with open(input_file, 'rb') as f:
|
||||
image_in_bytes = f.read()
|
||||
return send_file(io.BytesIO(image_in_bytes), mimetype='image/jpeg')
|
||||
else:
|
||||
return 'No Input Image'
|
||||
|
||||
|
||||
def get_args_parser():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--input", type=str, help="Path to image you want to load by default")
|
||||
parser.add_argument("--port", default=8080, type=int)
|
||||
parser.add_argument("--model", default="lama", choices=["lama", "ldm"])
|
||||
parser.add_argument("--crop-trigger-size", nargs=2, type=int,
|
||||
parser.add_argument("--crop-trigger-size", default=[2042, 2042], nargs=2, type=int,
|
||||
help="If image size large then crop-trigger-size, "
|
||||
"crop each area from original image to do inference."
|
||||
"Mainly for performance and memory reasons"
|
||||
@ -128,11 +144,16 @@ def get_args_parser():
|
||||
def main():
|
||||
global model
|
||||
global device
|
||||
global input_image
|
||||
|
||||
args = get_args_parser()
|
||||
device = torch.device(args.device)
|
||||
|
||||
input_image = args.input
|
||||
|
||||
if args.model == "lama":
|
||||
model = LaMa(crop_trigger_size=args.crop_trigger_size, crop_margin=args.crop_margin, device=device)
|
||||
model = LaMa(crop_trigger_size=args.crop_trigger_size,
|
||||
crop_margin=args.crop_margin, device=device)
|
||||
elif args.model == "ldm":
|
||||
model = LDM(device, steps=args.ldm_steps)
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user