add benchmark.py
This commit is contained in:
parent
f813c59b66
commit
bb6580cc0c
103
lama_cleaner/benchmark.py
Normal file
103
lama_cleaner/benchmark.py
Normal file
@ -0,0 +1,103 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import multiprocessing
|
||||
import os
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import nvidia_smi
|
||||
import psutil
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from lama_cleaner.lama import LaMa
|
||||
|
||||
try:
|
||||
torch._C._jit_override_can_fuse_on_cpu(False)
|
||||
torch._C._jit_override_can_fuse_on_gpu(False)
|
||||
torch._C._jit_set_texpr_fuser_enabled(False)
|
||||
torch._C._jit_set_nvfuser_enabled(False)
|
||||
except:
|
||||
pass
|
||||
|
||||
from lama_cleaner.helper import norm_img
|
||||
|
||||
NUM_THREADS = str(4)
|
||||
|
||||
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
|
||||
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
|
||||
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
|
||||
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
|
||||
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
|
||||
if os.environ.get("CACHE_DIR"):
|
||||
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
|
||||
|
||||
|
||||
def run_model(model, size):
|
||||
# RGB
|
||||
image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8)
|
||||
image = norm_img(image)
|
||||
|
||||
mask = np.random.randint(0, 255, size).astype(np.uint8)
|
||||
mask = norm_img(mask)
|
||||
model(image, mask)
|
||||
|
||||
|
||||
def benchmark(model, times: int, empty_cache: bool):
|
||||
sizes = [
|
||||
(512, 512),
|
||||
(640, 640),
|
||||
(1080, 800),
|
||||
(2000, 2000)
|
||||
]
|
||||
|
||||
nvidia_smi.nvmlInit()
|
||||
device_id = 0
|
||||
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(device_id)
|
||||
|
||||
def format(metrics):
|
||||
return f"{np.mean(metrics):.2f} ± {np.std(metrics):.2f}"
|
||||
|
||||
process = psutil.Process(os.getpid())
|
||||
# 每个 size 给出显存和内存占用的指标
|
||||
for size in sizes:
|
||||
torch.cuda.empty_cache()
|
||||
time_metrics = []
|
||||
cpu_metrics = []
|
||||
memory_metrics = []
|
||||
gpu_memory_metrics = []
|
||||
for _ in range(times):
|
||||
start = time.time()
|
||||
run_model(model, size)
|
||||
torch.cuda.synchronize()
|
||||
if empty_cache:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# cpu_metrics.append(process.cpu_percent())
|
||||
time_metrics.append((time.time() - start) * 1000)
|
||||
memory_metrics.append(process.memory_info().rss / 1024 / 1024)
|
||||
gpu_memory_metrics.append(nvidia_smi.nvmlDeviceGetMemoryInfo(handle).used / 1024 / 1024)
|
||||
|
||||
print(f"size: {size}".center(80, "-"))
|
||||
# print(f"cpu: {format(cpu_metrics)}")
|
||||
print(f"latency: {format(time_metrics)}ms")
|
||||
print(f"memory: {format(memory_metrics)} MB")
|
||||
print(f"gpu memory: {format(gpu_memory_metrics)} MB")
|
||||
|
||||
nvidia_smi.nvmlShutdown()
|
||||
|
||||
|
||||
def get_args_parser():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--device", default="cuda", type=str)
|
||||
parser.add_argument("--times", default=20, type=int)
|
||||
parser.add_argument("--empty-cache", action="store_true")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args_parser()
|
||||
device = torch.device(args.device)
|
||||
model = LaMa(device)
|
||||
benchmark(model, args.times, args.empty_cache)
|
Loading…
Reference in New Issue
Block a user