Merge branch 'add_paint_by_example'

This commit is contained in:
Qing 2022-12-11 22:04:59 +08:00
commit c79778f492
32 changed files with 671 additions and 133 deletions

View File

@ -1,17 +1,17 @@
{
"files": {
"main.css": "/static/css/main.bb67386a.chunk.css",
"main.js": "/static/js/main.5cf6948e.chunk.js",
"main.css": "/static/css/main.b30da02b.chunk.css",
"main.js": "/static/js/main.994b5b32.chunk.js",
"runtime-main.js": "/static/js/runtime-main.5e86ac81.js",
"static/js/2.ee9dcc6c.chunk.js": "/static/js/2.ee9dcc6c.chunk.js",
"static/js/2.ada71d88.chunk.js": "/static/js/2.ada71d88.chunk.js",
"index.html": "/index.html",
"static/js/2.ee9dcc6c.chunk.js.LICENSE.txt": "/static/js/2.ee9dcc6c.chunk.js.LICENSE.txt",
"static/js/2.ada71d88.chunk.js.LICENSE.txt": "/static/js/2.ada71d88.chunk.js.LICENSE.txt",
"static/media/_index.scss": "/static/media/WorkSans-SemiBold.1e98db4e.ttf"
},
"entrypoints": [
"static/js/runtime-main.5e86ac81.js",
"static/js/2.ee9dcc6c.chunk.js",
"static/css/main.bb67386a.chunk.css",
"static/js/main.5cf6948e.chunk.js"
"static/js/2.ada71d88.chunk.js",
"static/css/main.b30da02b.chunk.css",
"static/js/main.994b5b32.chunk.js"
]
}

View File

@ -1 +1 @@
<!doctype html><html lang="en"><head><meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate"/><meta http-equiv="Pragma" content="no-cache"/><meta http-equiv="Expires" content="0"/><meta charset="utf-8"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1,user-scalable=0"/><meta name="theme-color" content="#ffffff"/><title>lama-cleaner - Image inpainting powered by SOTA AI model</title><link href="/static/css/main.bb67386a.chunk.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div><script>!function(e){function r(r){for(var n,l,a=r[0],f=r[1],i=r[2],p=0,s=[];p<a.length;p++)l=a[p],Object.prototype.hasOwnProperty.call(o,l)&&o[l]&&s.push(o[l][0]),o[l]=0;for(n in f)Object.prototype.hasOwnProperty.call(f,n)&&(e[n]=f[n]);for(c&&c(r);s.length;)s.shift()();return u.push.apply(u,i||[]),t()}function t(){for(var e,r=0;r<u.length;r++){for(var t=u[r],n=!0,a=1;a<t.length;a++){var f=t[a];0!==o[f]&&(n=!1)}n&&(u.splice(r--,1),e=l(l.s=t[0]))}return e}var n={},o={1:0},u=[];function l(r){if(n[r])return n[r].exports;var t=n[r]={i:r,l:!1,exports:{}};return e[r].call(t.exports,t,t.exports,l),t.l=!0,t.exports}l.m=e,l.c=n,l.d=function(e,r,t){l.o(e,r)||Object.defineProperty(e,r,{enumerable:!0,get:t})},l.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},l.t=function(e,r){if(1&r&&(e=l(e)),8&r)return e;if(4&r&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(l.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&r&&"string"!=typeof e)for(var n in e)l.d(t,n,function(r){return e[r]}.bind(null,n));return t},l.n=function(e){var r=e&&e.__esModule?function(){return e.default}:function(){return e};return l.d(r,"a",r),r},l.o=function(e,r){return Object.prototype.hasOwnProperty.call(e,r)},l.p="/";var a=this["webpackJsonplama-cleaner"]=this["webpackJsonplama-cleaner"]||[],f=a.push.bind(a);a.push=r,a=a.slice();for(var i=0;i<a.length;i++)r(a[i]);var c=f;t()}([])</script><script src="/static/js/2.ee9dcc6c.chunk.js"></script><script src="/static/js/main.5cf6948e.chunk.js"></script></body></html>
<!doctype html><html lang="en"><head><meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate"/><meta http-equiv="Pragma" content="no-cache"/><meta http-equiv="Expires" content="0"/><meta charset="utf-8"/><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1,user-scalable=0"/><meta name="theme-color" content="#ffffff"/><title>lama-cleaner - Image inpainting powered by SOTA AI model</title><link href="/static/css/main.b30da02b.chunk.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div><script>!function(e){function r(r){for(var n,l,a=r[0],f=r[1],i=r[2],p=0,s=[];p<a.length;p++)l=a[p],Object.prototype.hasOwnProperty.call(o,l)&&o[l]&&s.push(o[l][0]),o[l]=0;for(n in f)Object.prototype.hasOwnProperty.call(f,n)&&(e[n]=f[n]);for(c&&c(r);s.length;)s.shift()();return u.push.apply(u,i||[]),t()}function t(){for(var e,r=0;r<u.length;r++){for(var t=u[r],n=!0,a=1;a<t.length;a++){var f=t[a];0!==o[f]&&(n=!1)}n&&(u.splice(r--,1),e=l(l.s=t[0]))}return e}var n={},o={1:0},u=[];function l(r){if(n[r])return n[r].exports;var t=n[r]={i:r,l:!1,exports:{}};return e[r].call(t.exports,t,t.exports,l),t.l=!0,t.exports}l.m=e,l.c=n,l.d=function(e,r,t){l.o(e,r)||Object.defineProperty(e,r,{enumerable:!0,get:t})},l.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},l.t=function(e,r){if(1&r&&(e=l(e)),8&r)return e;if(4&r&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(l.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&r&&"string"!=typeof e)for(var n in e)l.d(t,n,function(r){return e[r]}.bind(null,n));return t},l.n=function(e){var r=e&&e.__esModule?function(){return e.default}:function(){return e};return l.d(r,"a",r),r},l.o=function(e,r){return Object.prototype.hasOwnProperty.call(e,r)},l.p="/";var a=this["webpackJsonplama-cleaner"]=this["webpackJsonplama-cleaner"]||[],f=a.push.bind(a);a.push=r,a=a.slice();for(var i=0;i<a.length;i++)r(a[i]);var c=f;t()}([])</script><script src="/static/js/2.ada71d88.chunk.js"></script><script src="/static/js/main.994b5b32.chunk.js"></script></body></html>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -12,7 +12,8 @@ export default async function inpaint(
sizeLimit?: string,
seed?: number,
maskBase64?: string,
customMask?: File
customMask?: File,
paintByExampleImage?: File
) {
// 1080, 2000, Original
const fd = new FormData()
@ -48,6 +49,7 @@ export default async function inpaint(
fd.append('croperHeight', croperRect.height.toString())
fd.append('croperWidth', croperRect.width.toString())
fd.append('useCroper', settings.showCroper ? 'true' : 'false')
fd.append('sdMaskBlur', settings.sdMaskBlur.toString())
fd.append('sdStrength', settings.sdStrength.toString())
fd.append('sdSteps', settings.sdSteps.toString())
@ -59,6 +61,26 @@ export default async function inpaint(
fd.append('cv2Radius', settings.cv2Radius.toString())
fd.append('cv2Flag', settings.cv2Flag.toString())
fd.append('paintByExampleSteps', settings.paintByExampleSteps.toString())
fd.append(
'paintByExampleGuidanceScale',
settings.paintByExampleGuidanceScale.toString()
)
fd.append('paintByExampleSeed', seed ? seed.toString() : '-1')
fd.append(
'paintByExampleMaskBlur',
settings.paintByExampleMaskBlur.toString()
)
fd.append(
'paintByExampleMatchHistograms',
settings.paintByExampleMatchHistograms ? 'true' : 'false'
)
// TODO: resize image's shortest_edge to 224 before pass to backend, save network time?
// https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPImageProcessor
if (paintByExampleImage) {
fd.append('paintByExampleImage', paintByExampleImage)
}
if (sizeLimit === undefined) {
fd.append('sizeLimit', '1080')
} else {

View File

@ -30,6 +30,7 @@ interface Props {
scale: number
minHeight: number
minWidth: number
show: boolean
}
const clamp = (
@ -66,7 +67,7 @@ const clamp = (
}
const Croper = (props: Props) => {
const { minHeight, minWidth, maxHeight, maxWidth, scale } = props
const { minHeight, minWidth, maxHeight, maxWidth, scale, show } = props
const [x, setX] = useRecoilState(croperX)
const [y, setY] = useRecoilState(croperY)
const [height, setHeight] = useRecoilState(croperHeight)
@ -79,7 +80,7 @@ const Croper = (props: Props) => {
useEffect(() => {
setX(Math.round((maxWidth - 512) / 2))
setY(Math.round((maxHeight - 512) / 2))
}, [maxHeight, maxWidth, minHeight, minWidth])
}, [maxHeight, maxWidth])
const [evData, setEVData] = useState<EVData>({
initX: 0,
@ -391,7 +392,10 @@ const Croper = (props: Props) => {
}
return (
<div className="croper-wrapper">
<div
className="croper-wrapper"
style={{ visibility: show ? 'visible' : 'hidden' }}
>
<div className="croper" style={{ height, width, left: x, top: y }}>
{createBorder()}
{createInfoBar()}

View File

@ -39,6 +39,7 @@ import {
isInpaintingState,
isInteractiveSegRunningState,
isInteractiveSegState,
isPaintByExampleState,
isSDState,
negativePropmtState,
propmtState,
@ -53,6 +54,7 @@ import emitter, {
EVENT_PROMPT,
EVENT_CUSTOM_MASK,
CustomMaskEventData,
EVENT_PAINT_BY_EXAMPLE,
} from '../../event'
import FileSelect from '../FileSelect/FileSelect'
import InteractiveSeg from '../InteractiveSeg/InteractiveSeg'
@ -108,6 +110,7 @@ export default function Editor() {
const [isInpainting, setIsInpainting] = useRecoilState(isInpaintingState)
const runMannually = useRecoilValue(runManuallyState)
const isSD = useRecoilValue(isSDState)
const isPaintByExample = useRecoilValue(isPaintByExampleState)
const [isInteractiveSeg, setIsInteractiveSeg] = useRecoilState(
isInteractiveSegState
)
@ -262,8 +265,11 @@ export default function Editor() {
async (
useLastLineGroup?: boolean,
customMask?: File,
maskImage?: HTMLImageElement | null
maskImage?: HTMLImageElement | null,
paintByExampleImage?: File
) => {
// customMask: mask uploaded by user
// maskImage: mask from interactive segmentation
if (file === undefined) {
return
}
@ -328,9 +334,6 @@ export default function Editor() {
}
}
const sdSeed = settings.sdSeedFixed ? settings.sdSeed : -1
console.log({ useCustomMask })
try {
const res = await inpaint(
targetFile,
@ -339,15 +342,16 @@ export default function Editor() {
promptVal,
negativePromptVal,
sizeLimit.toString(),
sdSeed,
seedVal,
useCustomMask ? undefined : maskCanvas.toDataURL(),
useCustomMask ? customMask : undefined
useCustomMask ? customMask : undefined,
paintByExampleImage
)
if (!res) {
throw new Error('Something went wrong on server side.')
}
const { blob, seed } = res
if (seed && !settings.sdSeedFixed) {
if (seed) {
setSeed(parseInt(seed, 10))
}
const newRender = new Image()
@ -395,6 +399,7 @@ export default function Editor() {
drawOnCurrentRender,
hadDrawSomething,
drawLinesOnMask,
seedVal,
]
)
@ -431,6 +436,7 @@ export default function Editor() {
useEffect(() => {
emitter.on(EVENT_CUSTOM_MASK, (data: any) => {
// TODO: not work with paint by example
runInpainting(false, data.mask)
})
@ -439,6 +445,31 @@ export default function Editor() {
}
}, [runInpainting])
useEffect(() => {
emitter.on(EVENT_PAINT_BY_EXAMPLE, (data: any) => {
if (hadDrawSomething() || interactiveSegMask) {
runInpainting(false, undefined, interactiveSegMask, data.image)
} else if (lastLineGroup.length !== 0) {
// 使用上一次手绘的 mask 生成
runInpainting(true, undefined, prevInteractiveSegMask, data.image)
} else if (prevInteractiveSegMask) {
// 使用上一次 IS 的 mask 生成
runInpainting(false, undefined, prevInteractiveSegMask, data.image)
} else {
setToastState({
open: true,
desc: 'Please draw mask on picture',
state: 'error',
duration: 1500,
})
}
})
return () => {
emitter.off(EVENT_PAINT_BY_EXAMPLE)
}
}, [runInpainting])
const hadRunInpainting = () => {
return renders.length !== 0
}
@ -793,7 +824,11 @@ export default function Editor() {
return
}
if (isSD && settings.showCroper && isOutsideCroper(mouseXY(ev))) {
if (
(isSD || isPaintByExample) &&
settings.showCroper &&
isOutsideCroper(mouseXY(ev))
) {
return
}
@ -876,7 +911,12 @@ export default function Editor() {
return false
}
useKey(undoPredicate, undo, undefined, [undoStroke, undoRender, isSD])
useKey(undoPredicate, undo, undefined, [
undoStroke,
undoRender,
runMannually,
curLineGroup,
])
const disableUndo = () => {
if (isInteractiveSeg) {
@ -955,7 +995,12 @@ export default function Editor() {
return false
}
useKey(redoPredicate, redo, undefined, [redoStroke, redoRender, isSD])
useKey(redoPredicate, redo, undefined, [
redoStroke,
redoRender,
runMannually,
redoCurLines,
])
const disableRedo = () => {
if (isInteractiveSeg) {
@ -1295,17 +1340,14 @@ export default function Editor() {
</div>
</div>
{isSD && settings.showCroper ? (
<Croper
maxHeight={original.naturalHeight}
maxWidth={original.naturalWidth}
minHeight={Math.min(256, original.naturalHeight)}
minWidth={Math.min(256, original.naturalWidth)}
scale={scale}
/>
) : (
<></>
)}
<Croper
maxHeight={original.naturalHeight}
maxWidth={original.naturalWidth}
minHeight={Math.min(256, original.naturalHeight)}
minWidth={Math.min(256, original.naturalWidth)}
scale={scale}
show={(isSD || isPaintByExample) && settings.showCroper}
/>
{isInteractiveSeg ? <InteractiveSeg /> : <></>}
</TransformComponent>
@ -1358,7 +1400,7 @@ export default function Editor() {
)}
<div className="editor-toolkit-panel">
{isSD || file === undefined ? (
{isSD || isPaintByExample || file === undefined ? (
<></>
) : (
<SizeSelector
@ -1466,7 +1508,7 @@ export default function Editor() {
onClick={download}
/>
{settings.runInpaintingManually && !isSD && (
{settings.runInpaintingManually && !isSD && !isPaintByExample && (
<Button
toolTip="Run Inpainting"
tooltipPosition="top"

View File

@ -32,3 +32,12 @@ header {
gap: 6px;
justify-self: end;
}
.mask-preview {
max-height: 400px;
max-width: 400px;
margin-top: 30px;
margin-left: 20px;
border: 1px solid var(--border-color);
border-radius: 8px;
}

View File

@ -2,12 +2,13 @@ import { ArrowUpTrayIcon } from '@heroicons/react/24/outline'
import { PlayIcon } from '@radix-ui/react-icons'
import React, { useState } from 'react'
import { useRecoilState, useRecoilValue } from 'recoil'
import * as PopoverPrimitive from '@radix-ui/react-popover'
import {
fileState,
interactiveSegClicksState,
isInpaintingState,
isSDState,
maskState,
runManuallyState,
} from '../../store/Atoms'
import Button from '../shared/Button'
import Shortcuts from '../Shortcuts/Shortcuts'
@ -16,14 +17,18 @@ import SettingIcon from '../Settings/SettingIcon'
import PromptInput from './PromptInput'
import CoffeeIcon from '../CoffeeIcon/CoffeeIcon'
import emitter, { EVENT_CUSTOM_MASK } from '../../event'
import { useImage } from '../../utils'
const Header = () => {
const isInpainting = useRecoilValue(isInpaintingState)
const [file, setFile] = useRecoilState(fileState)
const [mask, setMask] = useRecoilState(maskState)
const [maskImage, maskImageLoaded] = useImage(mask)
const [uploadElemId] = useState(`file-upload-${Math.random().toString()}`)
const [maskUploadElemId] = useState(`mask-upload-${Math.random().toString()}`)
const isSD = useRecoilValue(isSDState)
const runManually = useRecoilValue(runManuallyState)
const [openMaskPopover, setOpenMaskPopover] = useState(false)
const renderHeader = () => {
return (
@ -88,10 +93,11 @@ const Header = () => {
onChange={ev => {
const newFile = ev.currentTarget.files?.[0]
if (newFile) {
// TODO: check mask size
console.info('Send custom mask')
emitter.emit(EVENT_CUSTOM_MASK, { mask: newFile })
setMask(newFile)
console.info('Send custom mask')
if (!runManually) {
emitter.emit(EVENT_CUSTOM_MASK, { mask: newFile })
}
}
}}
accept="image/png, image/jpeg"
@ -99,17 +105,42 @@ const Header = () => {
Mask
</Button>
</label>
<Button
style={{
visibility: mask ? 'visible' : 'hidden',
}}
icon={<PlayIcon />}
onClick={() => {
if (mask) {
emitter.emit(EVENT_CUSTOM_MASK, { mask })
}
}}
/>
<PopoverPrimitive.Root open={openMaskPopover}>
<PopoverPrimitive.Trigger
className="btn-primary side-panel-trigger"
onMouseEnter={() => setOpenMaskPopover(true)}
onMouseLeave={() => setOpenMaskPopover(false)}
style={{
visibility: mask ? 'visible' : 'hidden',
outline: 'none',
}}
onClick={() => {
if (mask) {
emitter.emit(EVENT_CUSTOM_MASK, { mask })
}
}}
>
<PlayIcon />
</PopoverPrimitive.Trigger>
<PopoverPrimitive.Portal>
<PopoverPrimitive.Content
style={{
outline: 'none',
}}
>
{maskImageLoaded ? (
<img
src={maskImage.src}
alt="mask"
className="mask-preview"
/>
) : (
<></>
)}
</PopoverPrimitive.Content>
</PopoverPrimitive.Portal>
</PopoverPrimitive.Root>
</div>
</div>

View File

@ -193,6 +193,8 @@ function ModelSettingBlock() {
return undefined
case AIModel.SD2:
return undefined
case AIModel.PAINT_BY_EXAMPLE:
return undefined
case AIModel.Mange:
return undefined
case AIModel.CV2:
@ -258,6 +260,12 @@ function ModelSettingBlock() {
'https://docs.opencv.org/4.6.0/df/d3d/tutorial_py_inpainting.html',
'https://docs.opencv.org/4.6.0/df/d3d/tutorial_py_inpainting.html'
)
case AIModel.PAINT_BY_EXAMPLE:
return renderModelDesc(
'Paint by Example',
'https://arxiv.org/abs/2211.13227',
'https://github.com/Fantasy-Studio/Paint-by-Example'
)
default:
return <></>
}
@ -270,7 +278,6 @@ function ModelSettingBlock() {
titleSuffix={renderPaperCodeBadge()}
input={
<Selector
width={80}
value={setting.model as string}
options={Object.values(AIModel)}
onChange={val => onModelChange(val as AIModel)}

View File

@ -1,12 +1,15 @@
import React from 'react'
import { useRecoilState, useRecoilValue } from 'recoil'
import { isSDState, settingState } from '../../store/Atoms'
import {
isPaintByExampleState,
isSDState,
settingState,
} from '../../store/Atoms'
import Modal from '../shared/Modal'
import ManualRunInpaintingSettingBlock from './ManualRunInpaintingSettingBlock'
import HDSettingBlock from './HDSettingBlock'
import ModelSettingBlock from './ModelSettingBlock'
import GraduallyInpaintingSettingBlock from './GraduallyInpaintingSettingBlock'
import DownloadMaskSettingBlock from './DownloadMaskSettingBlock'
import useHotKey from '../../hooks/useHotkey'
@ -17,6 +20,7 @@ export default function SettingModal(props: SettingModalProps) {
const { onClose } = props
const [setting, setSettingState] = useRecoilState(settingState)
const isSD = useRecoilValue(isSDState)
const isPaintByExample = useRecoilValue(isPaintByExampleState)
const handleOnClose = () => {
setSettingState(old => {
@ -43,7 +47,7 @@ export default function SettingModal(props: SettingModalProps) {
className="modal-setting"
show={setting.show}
>
{isSD ? <></> : <ManualRunInpaintingSettingBlock />}
{isSD || isPaintByExample ? <></> : <ManualRunInpaintingSettingBlock />}
{/* <GraduallyInpaintingSettingBlock /> */}
<DownloadMaskSettingBlock />

View File

@ -0,0 +1,231 @@
import React, { useState } from 'react'
import { useRecoilState, useRecoilValue } from 'recoil'
import * as PopoverPrimitive from '@radix-ui/react-popover'
import { useToggle } from 'react-use'
import { UploadIcon } from '@radix-ui/react-icons'
import {
isInpaintingState,
paintByExampleImageState,
settingState,
} from '../../store/Atoms'
import NumberInputSetting from '../Settings/NumberInputSetting'
import SettingBlock from '../Settings/SettingBlock'
import { Switch, SwitchThumb } from '../shared/Switch'
import Button from '../shared/Button'
import emitter, { EVENT_PAINT_BY_EXAMPLE } from '../../event'
import { useImage } from '../../utils'
const INPUT_WIDTH = 30
const PESidePanel = () => {
const [open, toggleOpen] = useToggle(true)
const [setting, setSettingState] = useRecoilState(settingState)
const [paintByExampleImage, setPaintByExampleImage] = useRecoilState(
paintByExampleImageState
)
const [uploadElemId] = useState(
`example-file-upload-${Math.random().toString()}`
)
const [exampleImage, isExampleImageLoaded] = useImage(paintByExampleImage)
const isInpainting = useRecoilValue(isInpaintingState)
const renderUploadIcon = () => {
return (
<label htmlFor={uploadElemId}>
<Button
border
toolTip="Upload example image"
tooltipPosition="top"
icon={<UploadIcon />}
style={{ padding: '0.3rem', gap: 0 }}
>
<input
style={{ display: 'none' }}
id={uploadElemId}
name={uploadElemId}
type="file"
onChange={ev => {
const newFile = ev.currentTarget.files?.[0]
if (newFile) {
setPaintByExampleImage(newFile)
}
}}
accept="image/png, image/jpeg"
/>
</Button>
</label>
)
}
return (
<div className="side-panel">
<PopoverPrimitive.Root open={open}>
<PopoverPrimitive.Trigger
className="btn-primary side-panel-trigger"
onClick={() => toggleOpen()}
>
Configurations
</PopoverPrimitive.Trigger>
<PopoverPrimitive.Portal>
<PopoverPrimitive.Content className="side-panel-content">
<SettingBlock
title="Croper"
input={
<Switch
checked={setting.showCroper}
onCheckedChange={value => {
setSettingState(old => {
return { ...old, showCroper: value }
})
}}
>
<SwitchThumb />
</Switch>
}
/>
<NumberInputSetting
title="Steps"
width={INPUT_WIDTH}
value={`${setting.paintByExampleSteps}`}
desc="The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference."
onValue={value => {
const val = value.length === 0 ? 0 : parseInt(value, 10)
setSettingState(old => {
return { ...old, paintByExampleSteps: val }
})
}}
/>
<NumberInputSetting
title="Guidance Scale"
width={INPUT_WIDTH}
allowFloat
value={`${setting.paintByExampleGuidanceScale}`}
desc="Higher guidance scale encourages to generate images that are close to the example image"
onValue={value => {
const val = value.length === 0 ? 0 : parseFloat(value)
setSettingState(old => {
return { ...old, paintByExampleGuidanceScale: val }
})
}}
/>
<NumberInputSetting
title="Mask Blur"
width={INPUT_WIDTH}
value={`${setting.paintByExampleMaskBlur}`}
desc="Blur the edge of mask area. The higher the number the smoother blend with the original image"
onValue={value => {
const val = value.length === 0 ? 0 : parseInt(value, 10)
setSettingState(old => {
return { ...old, paintByExampleMaskBlur: val }
})
}}
/>
<SettingBlock
title="Match Histograms"
desc="Match the inpainting result histogram to the source image histogram, will improves the inpainting quality for some images."
input={
<Switch
checked={setting.paintByExampleMatchHistograms}
onCheckedChange={value => {
setSettingState(old => {
return { ...old, paintByExampleMatchHistograms: value }
})
}}
>
<SwitchThumb />
</Switch>
}
/>
<SettingBlock
title="Seed"
input={
<div
style={{
display: 'flex',
gap: 0,
justifyContent: 'center',
alignItems: 'center',
}}
>
{/* 每次会从服务器返回更新该值 */}
<NumberInputSetting
title=""
width={80}
value={`${setting.paintByExampleSeed}`}
desc=""
disable={!setting.paintByExampleSeedFixed}
onValue={value => {
const val = value.length === 0 ? 0 : parseInt(value, 10)
setSettingState(old => {
return { ...old, paintByExampleSeed: val }
})
}}
/>
<Switch
checked={setting.paintByExampleSeedFixed}
onCheckedChange={value => {
setSettingState(old => {
return { ...old, paintByExampleSeedFixed: value }
})
}}
style={{ marginLeft: '8px' }}
>
<SwitchThumb />
</Switch>
</div>
}
/>
<div style={{ display: 'flex', flexDirection: 'column' }}>
<SettingBlock title="Example Image" input={renderUploadIcon()} />
{paintByExampleImage ? (
<div
style={{
display: 'flex',
justifyContent: 'center',
alignItems: 'center',
}}
>
<img
src={exampleImage.src}
alt="example"
style={{
maxWidth: 200,
maxHeight: 200,
margin: 12,
}}
/>
</div>
) : (
<></>
)}
</div>
<Button
border
disabled={!isExampleImageLoaded || isInpainting}
style={{ width: '100%' }}
onClick={() => {
if (isExampleImageLoaded) {
emitter.emit(EVENT_PAINT_BY_EXAMPLE, {
image: paintByExampleImage,
})
}
}}
>
Paint
</Button>
</PopoverPrimitive.Content>
</PopoverPrimitive.Portal>
</PopoverPrimitive.Root>
</div>
)
}
export default PESidePanel

View File

@ -7,6 +7,7 @@ import Toast from './shared/Toast'
import {
AIModel,
fileState,
isPaintByExampleState,
isSDState,
settingState,
toastState,
@ -17,12 +18,14 @@ import {
switchModel,
} from '../adapters/inpainting'
import SidePanel from './SidePanel/SidePanel'
import PESidePanel from './SidePanel/PESidePanel'
const Workspace = () => {
const [file, setFile] = useRecoilState(fileState)
const [settings, setSettingState] = useRecoilState(settingState)
const [toastVal, setToastState] = useRecoilState(toastState)
const isSD = useRecoilValue(isSDState)
const isPaintByExample = useRecoilValue(isPaintByExampleState)
const onSettingClose = async () => {
const curModel = await currentModel().then(res => res.text())
@ -88,6 +91,7 @@ const Workspace = () => {
return (
<>
{isSD ? <SidePanel /> : <></>}
{isPaintByExample ? <PESidePanel /> : <></>}
<Editor />
<SettingModal onClose={onSettingClose} />
<ShortcutsModal />

View File

@ -1,11 +1,17 @@
import mitt from 'mitt'
export const EVENT_PROMPT = 'prompt'
export const EVENT_CUSTOM_MASK = 'custom_mask'
export interface CustomMaskEventData {
mask: File
}
export const EVENT_PAINT_BY_EXAMPLE = 'paint_by_example'
export interface PaintByExampleEventData {
image: File
}
const emitter = mitt()
export default emitter

View File

@ -13,6 +13,7 @@ export enum AIModel {
SD2 = 'sd2',
CV2 = 'cv2',
Mange = 'manga',
PAINT_BY_EXAMPLE = 'paint_by_example',
}
export const maskState = atom<File | undefined>({
@ -20,6 +21,11 @@ export const maskState = atom<File | undefined>({
default: undefined,
})
export const paintByExampleImageState = atom<File | undefined>({
key: 'paintByExampleImageState',
default: undefined,
})
export interface Rect {
x: number
y: number
@ -252,6 +258,14 @@ export interface Settings {
// For OpenCV2
cv2Radius: number
cv2Flag: CV2Flag
// Paint by Example
paintByExampleSteps: number
paintByExampleGuidanceScale: number
paintByExampleSeed: number
paintByExampleSeedFixed: boolean
paintByExampleMaskBlur: number
paintByExampleMatchHistograms: boolean
}
const defaultHDSettings: ModelsHDSettings = {
@ -304,6 +318,13 @@ const defaultHDSettings: ModelsHDSettings = {
hdStrategyCropMargin: 128,
enabled: false,
},
[AIModel.PAINT_BY_EXAMPLE]: {
hdStrategy: HDStrategy.ORIGINAL,
hdStrategyResizeLimit: 768,
hdStrategyCropTrigerSize: 512,
hdStrategyCropMargin: 128,
enabled: false,
},
[AIModel.Mange]: {
hdStrategy: HDStrategy.CROP,
hdStrategyResizeLimit: 1280,
@ -364,6 +385,14 @@ export const settingStateDefault: Settings = {
// CV2
cv2Radius: 5,
cv2Flag: CV2Flag.INPAINT_NS,
// Paint by Example
paintByExampleSteps: 50,
paintByExampleGuidanceScale: 7.5,
paintByExampleSeed: 42,
paintByExampleMaskBlur: 5,
paintByExampleSeedFixed: false,
paintByExampleMatchHistograms: false,
}
const localStorageEffect =
@ -401,11 +430,28 @@ export const seedState = selector({
key: 'seed',
get: ({ get }) => {
const settings = get(settingState)
return settings.sdSeed
switch (settings.model) {
case AIModel.PAINT_BY_EXAMPLE:
return settings.paintByExampleSeedFixed
? settings.paintByExampleSeed
: -1
default:
return settings.sdSeedFixed ? settings.sdSeed : -1
}
},
set: ({ get, set }, newValue: any) => {
const settings = get(settingState)
set(settingState, { ...settings, sdSeed: newValue })
switch (settings.model) {
case AIModel.PAINT_BY_EXAMPLE:
if (!settings.paintByExampleSeedFixed) {
set(settingState, { ...settings, paintByExampleSeed: newValue })
}
break
default:
if (!settings.sdSeedFixed) {
set(settingState, { ...settings, sdSeed: newValue })
}
}
},
})
@ -435,11 +481,20 @@ export const isSDState = selector({
},
})
export const isPaintByExampleState = selector({
key: 'isPaintByExampleState',
get: ({ get }) => {
const settings = get(settingState)
return settings.model === AIModel.PAINT_BY_EXAMPLE
},
})
export const runManuallyState = selector({
key: 'runManuallyState',
get: ({ get }) => {
const settings = get(settingState)
const isSD = get(isSDState)
return settings.runInpaintingManually || isSD
const isPaintByExample = get(isPaintByExampleState)
return settings.runInpaintingManually || isSD || isPaintByExample
},
})

View File

@ -211,6 +211,26 @@ class InpaintModel:
return result
def _apply_cropper(self, image, mask, config: Config):
img_h, img_w = image.shape[:2]
l, t, w, h = (
config.croper_x,
config.croper_y,
config.croper_width,
config.croper_height,
)
r = l + w
b = t + h
l = max(l, 0)
r = min(r, img_w)
t = max(t, 0)
b = min(b, img_h)
crop_img = image[t:b, l:r, :]
crop_mask = mask[t:b, l:r]
return crop_img, crop_mask, (l, t, r, b)
def _run_box(self, image, mask, box, config: Config):
"""

View File

@ -0,0 +1,80 @@
import random
import PIL
import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import DiffusionPipeline
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.schema import Config
class PaintByExample(InpaintModel):
pad_mod = 8
min_size = 512
def init_model(self, device: torch.device, **kwargs):
use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
torch_dtype = torch.float16 if use_gpu else torch.float32
self.model = DiffusionPipeline.from_pretrained(
"Fantasy-Studio/Paint-by-Example",
torch_dtype=torch_dtype,
)
self.model.enable_attention_slicing()
self.model = self.model.to(device)
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
seed = config.paint_by_example_seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
output = self.model(
image=PIL.Image.fromarray(image),
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
example_image=config.paint_by_example_example_image,
num_inference_steps=config.paint_by_example_steps,
output_type='np.array',
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@torch.no_grad()
def __call__(self, image, mask, config: Config):
"""
images: [H, W, C] RGB, not normalized
masks: [H, W]
return: BGR IMAGE
"""
if config.use_croper:
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
crop_image = self._pad_forward(crop_img, crop_mask, config)
inpaint_result = image[:, :, ::-1]
inpaint_result[t:b, l:r, :] = crop_image
else:
inpaint_result = self._pad_forward(image, mask, config)
return inpaint_result
def forward_post_process(self, result, image, mask, config):
if config.paint_by_example_match_histograms:
result = self._match_histograms(result, image[:, :, ::-1], mask)
if config.paint_by_example_mask_blur != 0:
k = 2 * config.paint_by_example_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)
return result, image, mask
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True

View File

@ -12,31 +12,6 @@ from lama_cleaner.model.base import InpaintModel
from lama_cleaner.schema import Config, SDSampler
#
#
# def preprocess_image(image):
# w, h = image.size
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
# image = image.resize((w, h), resample=PIL.Image.LANCZOS)
# image = np.array(image).astype(np.float32) / 255.0
# image = image[None].transpose(0, 3, 1, 2)
# image = torch.from_numpy(image)
# # [-1, 1]
# return 2.0 * image - 1.0
#
#
# def preprocess_mask(mask):
# mask = mask.convert("L")
# w, h = mask.size
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
# mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
# mask = np.array(mask).astype(np.float32) / 255.0
# mask = np.tile(mask, (4, 1, 1))
# mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
# mask = 1 - mask # repaint white, keep black
# mask = torch.from_numpy(mask)
# return mask
class CPUTextEncoderWrapper:
def __init__(self, text_encoder, torch_dtype):
self.config = text_encoder.config
@ -75,7 +50,7 @@ class SD(InpaintModel):
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing()
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
if kwargs['sd_enable_xformers']:
if kwargs.get('sd_enable_xformers', False):
self.model.enable_xformers_memory_efficient_attention()
self.model = self.model.to(device)
@ -92,17 +67,6 @@ class SD(InpaintModel):
return: BGR IMAGE
"""
# image = norm_img(image) # [0, 1]
# image = image * 2 - 1 # [0, 1] -> [-1, 1]
# resize to latent feature map size
# h, w = mask.shape[:2]
# mask = cv2.resize(mask, (h // 8, w // 8), interpolation=cv2.INTER_AREA)
# mask = norm_img(mask)
#
# image = torch.from_numpy(image).unsqueeze(0).to(self.device)
# mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
scheduler_config = self.model.scheduler.config
if config.sd_sampler == SDSampler.ddim:
@ -139,7 +103,6 @@ class SD(InpaintModel):
prompt=config.prompt,
negative_prompt=config.negative_prompt,
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
strength=config.sd_strength,
num_inference_steps=config.sd_steps,
guidance_scale=config.sd_guidance_scale,
output_type="np.array",
@ -159,30 +122,10 @@ class SD(InpaintModel):
masks: [H, W]
return: BGR IMAGE
"""
img_h, img_w = image.shape[:2]
# boxes = boxes_from_mask(mask)
if config.use_croper:
logger.info("use croper")
l, t, w, h = (
config.croper_x,
config.croper_y,
config.croper_width,
config.croper_height,
)
r = l + w
b = t + h
l = max(l, 0)
r = min(r, img_w)
t = max(t, 0)
b = min(b, img_h)
crop_img = image[t:b, l:r, :]
crop_mask = mask[t:b, l:r]
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
crop_image = self._pad_forward(crop_img, crop_mask, config)
inpaint_result = image[:, :, ::-1]
inpaint_result[t:b, l:r, :] = crop_image
else:

View File

@ -5,13 +5,14 @@ from lama_cleaner.model.lama import LaMa
from lama_cleaner.model.ldm import LDM
from lama_cleaner.model.manga import Manga
from lama_cleaner.model.mat import MAT
from lama_cleaner.model.paint_by_example import PaintByExample
from lama_cleaner.model.sd import SD15, SD2
from lama_cleaner.model.zits import ZITS
from lama_cleaner.model.opencv2 import OpenCV2
from lama_cleaner.schema import Config
models = {"lama": LaMa, "ldm": LDM, "zits": ZITS, "mat": MAT, "fcf": FcF, "sd1.5": SD15, "cv2": OpenCV2, "manga": Manga,
"sd2": SD2}
"sd2": SD2, "paint_by_example": PaintByExample}
class ModelManager:

View File

@ -10,7 +10,7 @@ def parse_args():
parser.add_argument(
"--model",
default="lama",
choices=["lama", "ldm", "zits", "mat", "fcf", "sd1.5", "cv2", "manga", "sd2"],
choices=["lama", "ldm", "zits", "mat", "fcf", "sd1.5", "cv2", "manga", "sd2", "paint_by_example"],
)
parser.add_argument(
"--hf_access_token",

View File

@ -1,5 +1,6 @@
from enum import Enum
from PIL.Image import Image
from pydantic import BaseModel
@ -29,6 +30,9 @@ class SDSampler(str, Enum):
class Config(BaseModel):
class Config:
arbitrary_types_allowed = True
# Configs for ldm model
ldm_steps: int
ldm_sampler: str = LDMSampler.plms
@ -73,3 +77,11 @@ class Config(BaseModel):
# opencv document https://docs.opencv.org/4.6.0/d7/d8b/group__photo__inpaint.html#gga8002a65f5a3328fbf15df81b842d3c3ca05e763003a805e6c11c673a9f4ba7d07
cv2_flag: str = 'INPAINT_NS'
cv2_radius: int = 4
# Paint by Example
paint_by_example_steps: int = 50
paint_by_example_guidance_scale: float = 7.5
paint_by_example_mask_blur: int = 0
paint_by_example_seed: int = 42
paint_by_example_match_histograms: bool = False
paint_by_example_example_image: Image = None

View File

@ -10,6 +10,7 @@ import time
import imghdr
from pathlib import Path
from typing import Union
from PIL import Image
import cv2
import torch
@ -97,8 +98,8 @@ def process():
input = request.files
# RGB
origin_image_bytes = input["image"].read()
image, alpha_channel = load_img(origin_image_bytes)
mask, _ = load_img(input["mask"].read(), gray=True)
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
@ -115,6 +116,12 @@ def process():
else:
size_limit = int(size_limit)
if "paintByExampleImage" in input:
paint_by_example_example_image, _ = load_img(input["paintByExampleImage"].read())
paint_by_example_example_image = Image.fromarray(paint_by_example_example_image)
else:
paint_by_example_example_image = None
config = Config(
ldm_steps=form["ldmSteps"],
ldm_sampler=form["ldmSampler"],
@ -138,11 +145,19 @@ def process():
sd_seed=form["sdSeed"],
sd_match_histograms=form["sdMatchHistograms"],
cv2_flag=form["cv2Flag"],
cv2_radius=form['cv2Radius']
cv2_radius=form['cv2Radius'],
paint_by_example_steps=form["paintByExampleSteps"],
paint_by_example_guidance_scale=form["paintByExampleGuidanceScale"],
paint_by_example_mask_blur=form["paintByExampleMaskBlur"],
paint_by_example_seed=form["paintByExampleSeed"],
paint_by_example_match_histograms=form["paintByExampleMatchHistograms"],
paint_by_example_example_image=paint_by_example_example_image,
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
if config.paint_by_example_seed == -1:
config.paint_by_example_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

View File

@ -0,0 +1,50 @@
from pathlib import Path
import cv2
import pytest
import torch
from PIL import Image
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import HDStrategy
from lama_cleaner.tests.test_model import get_config, get_data
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / 'result'
save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
def assert_equal(
model, config, gt_name,
fx: float = 1, fy: float = 1,
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
example_p=current_dir / "bunny.jpeg",
):
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
example_image = cv2.imread(str(example_p))
example_image = cv2.cvtColor(example_image, cv2.COLOR_BGRA2RGB)
example_image = cv2.resize(example_image, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA)
print(f"Input image shape: {img.shape}, example_image: {example_image.shape}")
config.paint_by_example_example_image = Image.fromarray(example_image)
res = model(img, mask, config)
cv2.imwrite(str(save_dir / gt_name), res)
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
def test_paint_by_example(strategy):
model = ModelManager(name="paint_by_example", device=device)
cfg = get_config(strategy, paint_by_example_steps=30 if device == 'cuda' else 1)
assert_equal(
model,
cfg,
f"paint_by_example_{strategy.capitalize()}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fy=0.9,
fx=1.3
)

View File

@ -1,12 +1,10 @@
import os
from pathlib import Path
import cv2
import pytest
import torch
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
from lama_cleaner.schema import HDStrategy, SDSampler
from lama_cleaner.tests.test_model import get_config, assert_equal
current_dir = Path(__file__).parent.absolute().resolve()
@ -96,7 +94,7 @@ def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",

View File

@ -10,5 +10,5 @@ pytest
yacs
markupsafe==2.0.1
scikit-image==0.19.3
diffusers[torch]==0.9
transformers==4.21.0
diffusers[torch]==0.10.2
transformers>=4.25.1

View File

@ -31,11 +31,15 @@ setuptools.setup(
packages=setuptools.find_packages("./"),
package_data={"lama_cleaner": web_files},
install_requires=load_requirements(),
python_requires=">=3.6",
python_requires=">=3.7",
entry_points={"console_scripts": ["lama-cleaner=lama_cleaner:entry_point"]},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
)