add euler sampler

This commit is contained in:
Qing 2022-11-15 21:09:51 +08:00
parent 6503d7ec32
commit d7c3149f67
5 changed files with 144 additions and 86 deletions

View File

@ -231,6 +231,8 @@ export enum SDSampler {
ddim = 'ddim',
pndm = 'pndm',
klms = 'k_lms',
kEuler = 'k_euler',
kEulerA = 'k_euler_a',
}
export enum SDMode {

View File

@ -4,7 +4,8 @@ import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, \
EulerAncestralDiscreteScheduler
from loguru import logger
from lama_cleaner.model.base import InpaintModel
@ -98,25 +99,27 @@ class SD(InpaintModel):
# image = torch.from_numpy(image).unsqueeze(0).to(self.device)
# mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
scheduler_kwargs = dict(
beta_schedule="scaled_linear",
beta_start=0.00085,
beta_end=0.012,
num_train_timesteps=1000,
)
if config.sd_sampler == SDSampler.ddim:
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
**scheduler_kwargs,
clip_sample=False,
set_alpha_to_one=False,
)
elif config.sd_sampler == SDSampler.pndm:
PNDM_kwargs = {
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"beta_end": 0.012,
"num_train_timesteps": 1000,
"skip_prk_steps": True,
}
scheduler = PNDMScheduler(**PNDM_kwargs)
scheduler = PNDMScheduler(**scheduler_kwargs, skip_prk_steps=True)
elif config.sd_sampler == SDSampler.k_lms:
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
scheduler = LMSDiscreteScheduler(**scheduler_kwargs)
elif config.sd_sampler == SDSampler.k_euler:
scheduler = EulerDiscreteScheduler(**scheduler_kwargs)
elif config.sd_sampler == SDSampler.k_euler_a:
scheduler = EulerAncestralDiscreteScheduler(**scheduler_kwargs)
else:
raise ValueError(config.sd_sampler)

View File

@ -18,6 +18,8 @@ class SDSampler(str, Enum):
ddim = "ddim"
pndm = "pndm"
k_lms = "k_lms"
k_euler = 'k_euler'
k_euler_a = 'k_euler_a'
class Config(BaseModel):

View File

@ -161,79 +161,6 @@ def test_fcf(strategy):
)
@pytest.mark.parametrize("sd_device", ['cpu', 'cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim, SDSampler.pndm, SDSampler.k_lms])
@pytest.mark.parametrize("cpu_textencoder", [True, False])
@pytest.mark.parametrize("disable_nsfw", [True, False])
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents):
print(f"sd_step_{i}")
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
sd_disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder,
callback=callback)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
name = f"{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
def callback(i, t, latents):
pass
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
sd_disable_nsfw=True,
sd_cpu_textencoder=True,
callback=callback)
cfg = get_config(
strategy,
sd_steps=sd_steps,
prompt='Face of a fox, high resolution, sitting on a park bench',
negative_prompt='orange, yellow, small',
sd_sampler=sampler
)
name = f"{sampler}_negative_prompt"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1
)
@pytest.mark.parametrize(
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
)

View File

@ -0,0 +1,124 @@
import os
from pathlib import Path
import cv2
import pytest
import torch
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
from lama_cleaner.tests.test_model import get_config, assert_equal
current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / 'result'
save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
@pytest.mark.parametrize("sd_device", ['cpu', 'cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
@pytest.mark.parametrize("cpu_textencoder", [True, False])
@pytest.mark.parametrize("disable_nsfw", [True, False])
def test_runway_sd_1_5_ddim(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents):
print(f"sd_step_{i}")
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
sd_disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder,
callback=callback)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a])
@pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [True])
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents):
print(f"sd_step_{i}")
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50 if sd_device == 'cuda' else 1
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
sd_disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder,
callback=callback)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3
)
@pytest.mark.parametrize("sd_device", ['cuda'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
def callback(i, t, latents):
pass
if sd_device == 'cuda' and not torch.cuda.is_available():
return
sd_steps = 50
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
sd_disable_nsfw=True,
sd_cpu_textencoder=True,
callback=callback)
cfg = get_config(
strategy,
sd_steps=sd_steps,
prompt='Face of a fox, high resolution, sitting on a park bench',
negative_prompt='orange, yellow, small',
sd_sampler=sampler
)
name = f"{sampler}_negative_prompt"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1
)