update test

This commit is contained in:
Qing 2022-11-04 15:33:44 +08:00
parent ced53d9555
commit dc69276a7d
2 changed files with 43 additions and 93 deletions

View File

@ -1,7 +1,6 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import argparse import argparse
import multiprocessing
import os import os
import time import time
@ -9,9 +8,9 @@ import numpy as np
import nvidia_smi import nvidia_smi
import psutil import psutil
import torch import torch
from tqdm import tqdm
from lama_cleaner.lama import LaMa from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, SDSampler
try: try:
torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_cpu(False)
@ -21,8 +20,6 @@ try:
except: except:
pass pass
from lama_cleaner.helper import norm_img
NUM_THREADS = str(4) NUM_THREADS = str(4)
os.environ["OMP_NUM_THREADS"] = NUM_THREADS os.environ["OMP_NUM_THREADS"] = NUM_THREADS
@ -37,20 +34,23 @@ if os.environ.get("CACHE_DIR"):
def run_model(model, size): def run_model(model, size):
# RGB # RGB
image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8) image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8)
image = norm_img(image)
mask = np.random.randint(0, 255, size).astype(np.uint8) mask = np.random.randint(0, 255, size).astype(np.uint8)
mask = norm_img(mask)
model(image, mask) config = Config(
ldm_steps=2,
hd_strategy=HDStrategy.ORIGINAL,
hd_strategy_crop_margin=128,
hd_strategy_crop_trigger_size=128,
hd_strategy_resize_limit=128,
prompt="a fox is sitting on a bench",
sd_steps=5,
sd_sampler=SDSampler.ddim
)
model(image, mask, config)
def benchmark(model, times: int, empty_cache: bool): def benchmark(model, times: int, empty_cache: bool):
sizes = [ sizes = [(512, 512)]
(512, 512),
(640, 640),
(1080, 800),
(2000, 2000)
]
nvidia_smi.nvmlInit() nvidia_smi.nvmlInit()
device_id = 0 device_id = 0
@ -71,8 +71,6 @@ def benchmark(model, times: int, empty_cache: bool):
start = time.time() start = time.time()
run_model(model, size) run_model(model, size)
torch.cuda.synchronize() torch.cuda.synchronize()
if empty_cache:
torch.cuda.empty_cache()
# cpu_metrics.append(process.cpu_percent()) # cpu_metrics.append(process.cpu_percent())
time_metrics.append((time.time() - start) * 1000) time_metrics.append((time.time() - start) * 1000)
@ -90,8 +88,9 @@ def benchmark(model, times: int, empty_cache: bool):
def get_args_parser(): def get_args_parser():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--name")
parser.add_argument("--device", default="cuda", type=str) parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--times", default=20, type=int) parser.add_argument("--times", default=10, type=int)
parser.add_argument("--empty-cache", action="store_true") parser.add_argument("--empty-cache", action="store_true")
return parser.parse_args() return parser.parse_args()
@ -99,5 +98,12 @@ def get_args_parser():
if __name__ == "__main__": if __name__ == "__main__":
args = get_args_parser() args = get_args_parser()
device = torch.device(args.device) device = torch.device(args.device)
model = LaMa(device) model = ModelManager(
name=args.name,
device=device,
sd_run_local=True,
sd_disable_nsfw=True,
sd_cpu_textencoder=True,
hf_access_token="123"
)
benchmark(model, args.times, args.empty_cache) benchmark(model, args.times, args.empty_cache)

View File

@ -14,7 +14,7 @@ save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu' device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_data(fx=1, fy=1.0, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"): def get_data(fx: float = 1, fy: float = 1.0, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"):
img = cv2.imread(str(img_p)) img = cv2.imread(str(img_p))
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB) img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE) mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
@ -36,7 +36,10 @@ def get_config(strategy, **kwargs):
return Config(**data) return Config(**data)
def assert_equal(model, config, gt_name, fx=1, fy=1, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"): def assert_equal(model, config, gt_name,
fx: float = 1, fy: float = 1,
img_p=current_dir / "image.png",
mask_p=current_dir / "mask.png"):
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p) img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
print(f"Input image shape: {img.shape}") print(f"Input image shape: {img.shape}")
res = model(img, mask, config) res = model(img, mask, config)
@ -157,91 +160,32 @@ def test_fcf(strategy):
) )
@pytest.mark.parametrize("sd_device", ['cpu'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim, SDSampler.pndm, SDSampler.k_lms]) @pytest.mark.parametrize("sampler", [SDSampler.ddim, SDSampler.pndm, SDSampler.k_lms])
def test_sd(strategy, sampler):
def callback(i, t, latents):
print(f"sd_step_{i}")
sd_steps = 50
model = ModelManager(name="sd1.4",
device=device,
hf_access_token=os.environ['HF_ACCESS_TOKEN'],
sd_run_local=False,
sd_disable_nsfw=False,
sd_cpu_textencoder=False,
callback=callback)
cfg = get_config(strategy, prompt='a cat sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
assert_equal(
model,
cfg,
f"sd_{strategy.capitalize()}_{sampler}_result.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)
assert_equal(
model,
cfg,
f"sd_{strategy.capitalize()}_{sampler}_blur_mask_result.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask_blur.png",
)
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim, SDSampler.pndm, SDSampler.k_lms])
@pytest.mark.parametrize("disable_nsfw", [True, False])
@pytest.mark.parametrize("cpu_textencoder", [True, False]) @pytest.mark.parametrize("cpu_textencoder", [True, False])
def test_sd_run_local(strategy, sampler, disable_nsfw, cpu_textencoder): @pytest.mark.parametrize("disable_nsfw", [True, False])
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents): def callback(i, t, latents):
print(f"sd_step_{i}") print(f"sd_step_{i}")
sd_steps = 50 sd_steps = 1
model = ModelManager( model = ModelManager(name="sd1.5",
name="sd1.4", device=sd_device,
device=device, hf_access_token="",
# hf_access_token=os.environ.get('HF_ACCESS_TOKEN', None),
hf_access_token=None,
sd_run_local=True, sd_run_local=True,
sd_disable_nsfw=disable_nsfw, sd_disable_nsfw=disable_nsfw,
sd_cpu_textencoder=cpu_textencoder, sd_cpu_textencoder=cpu_textencoder,
)
cfg = get_config(strategy, prompt='a cat sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler
assert_equal(
model,
cfg,
f"sd_{strategy.capitalize()}_{sampler}_local_disablensfw_{disable_nsfw}_cputextencoder_{cpu_textencoder}_result.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim, SDSampler.pndm, SDSampler.k_lms])
def test_runway_sd_1_5(strategy, sampler):
def callback(i, t, latents):
print(f"sd_step_{i}")
sd_steps = 20
model = ModelManager(name="sd1.5",
device=device,
hf_access_token=None,
sd_run_local=True,
sd_disable_nsfw=True,
sd_cpu_textencoder=True,
callback=callback) callback=callback)
cfg = get_config(strategy, prompt='a cat sitting on a bench', sd_steps=sd_steps) cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps)
cfg.sd_sampler = sampler cfg.sd_sampler = sampler
name = f"{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
assert_equal( assert_equal(
model, model,
cfg, cfg,
f"runway_sd_{strategy.capitalize()}_{sampler}_result.png", f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3 fx=1.3
@ -250,7 +194,7 @@ def test_runway_sd_1_5(strategy, sampler):
assert_equal( assert_equal(
model, model,
cfg, cfg,
f"runway_sd_{strategy.capitalize()}_{sampler}_blur_mask_result.png", f"runway_sd_{strategy.capitalize()}_{name}_blur_mask.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask_blur.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask_blur.png",
fy=1.3 fy=1.3