add GFPGAN model
This commit is contained in:
parent
d938f2da3c
commit
e7c7896bfa
@ -101,6 +101,14 @@ def parse_args():
|
|||||||
type=str,
|
type=str,
|
||||||
choices=RealESRGANModelNameList,
|
choices=RealESRGANModelNameList,
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--enable-gfpgan",
|
||||||
|
action="store_true",
|
||||||
|
help="Enable GFPGAN face restore",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--gfpgan-device", default="cpu", type=str, choices=["cpu", "cuda"]
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--enable-gif",
|
"--enable-gif",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
from .interactive_seg import InteractiveSeg, Click
|
from .interactive_seg import InteractiveSeg, Click
|
||||||
from .remove_bg import RemoveBG
|
from .remove_bg import RemoveBG
|
||||||
from .realesrgan import RealESRGANUpscaler
|
from .realesrgan import RealESRGANUpscaler
|
||||||
|
from .gfpgan_plugin import GFPGANPlugin
|
||||||
from .gif import MakeGIF
|
from .gif import MakeGIF
|
||||||
|
61
lama_cleaner/plugins/gfpgan_plugin.py
Normal file
61
lama_cleaner/plugins/gfpgan_plugin.py
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
import cv2
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
|
from lama_cleaner.helper import download_model
|
||||||
|
from lama_cleaner.plugins.base_plugin import BasePlugin
|
||||||
|
|
||||||
|
|
||||||
|
class GFPGANPlugin(BasePlugin):
|
||||||
|
name = "GFPGAN"
|
||||||
|
|
||||||
|
def __init__(self, device):
|
||||||
|
super().__init__()
|
||||||
|
from .gfpganer import MyGFPGANer
|
||||||
|
|
||||||
|
url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
|
||||||
|
model_md5 = "94d735072630ab734561130a47bc44f8"
|
||||||
|
model_path = download_model(url, model_md5)
|
||||||
|
logger.info(f"GFPGAN model path: {model_path}")
|
||||||
|
|
||||||
|
# Use GFPGAN for face enhancement
|
||||||
|
self.face_enhancer = MyGFPGANer(
|
||||||
|
model_path=model_path,
|
||||||
|
upscale=2,
|
||||||
|
arch="clean",
|
||||||
|
channel_multiplier=2,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, rgb_np_img, files, form):
|
||||||
|
weight = 0.5
|
||||||
|
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||||
|
logger.info(f"GFPGAN input shape: {bgr_np_img.shape}")
|
||||||
|
_, _, bgr_output = self.face_enhancer.enhance(
|
||||||
|
bgr_np_img,
|
||||||
|
has_aligned=False,
|
||||||
|
only_center_face=False,
|
||||||
|
paste_back=True,
|
||||||
|
weight=weight,
|
||||||
|
)
|
||||||
|
logger.info(f"GFPGAN output shape: {bgr_output.shape}")
|
||||||
|
|
||||||
|
# try:
|
||||||
|
# if scale != 2:
|
||||||
|
# interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
||||||
|
# h, w = img.shape[0:2]
|
||||||
|
# output = cv2.resize(
|
||||||
|
# output,
|
||||||
|
# (int(w * scale / 2), int(h * scale / 2)),
|
||||||
|
# interpolation=interpolation,
|
||||||
|
# )
|
||||||
|
# except Exception as error:
|
||||||
|
# print("wrong scale input.", error)
|
||||||
|
return bgr_output
|
||||||
|
|
||||||
|
def check_dep(self):
|
||||||
|
try:
|
||||||
|
import gfpgan
|
||||||
|
except ImportError:
|
||||||
|
return (
|
||||||
|
"gfpgan is not installed, please install it first. pip install gfpgan"
|
||||||
|
)
|
84
lama_cleaner/plugins/gfpganer.py
Normal file
84
lama_cleaner/plugins/gfpganer.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
||||||
|
from gfpgan import GFPGANv1Clean, GFPGANer
|
||||||
|
from torch.hub import get_dir
|
||||||
|
|
||||||
|
|
||||||
|
class MyGFPGANer(GFPGANer):
|
||||||
|
"""Helper for restoration with GFPGAN.
|
||||||
|
|
||||||
|
It will detect and crop faces, and then resize the faces to 512x512.
|
||||||
|
GFPGAN is used to restored the resized faces.
|
||||||
|
The background is upsampled with the bg_upsampler.
|
||||||
|
Finally, the faces will be pasted back to the upsample background image.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
|
||||||
|
upscale (float): The upscale of the final output. Default: 2.
|
||||||
|
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
|
||||||
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
||||||
|
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_path,
|
||||||
|
upscale=2,
|
||||||
|
arch="clean",
|
||||||
|
channel_multiplier=2,
|
||||||
|
bg_upsampler=None,
|
||||||
|
device=None,
|
||||||
|
):
|
||||||
|
self.upscale = upscale
|
||||||
|
self.bg_upsampler = bg_upsampler
|
||||||
|
|
||||||
|
# initialize model
|
||||||
|
self.device = (
|
||||||
|
torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
if device is None
|
||||||
|
else device
|
||||||
|
)
|
||||||
|
# initialize the GFP-GAN
|
||||||
|
if arch == "clean":
|
||||||
|
self.gfpgan = GFPGANv1Clean(
|
||||||
|
out_size=512,
|
||||||
|
num_style_feat=512,
|
||||||
|
channel_multiplier=channel_multiplier,
|
||||||
|
decoder_load_path=None,
|
||||||
|
fix_decoder=False,
|
||||||
|
num_mlp=8,
|
||||||
|
input_is_latent=True,
|
||||||
|
different_w=True,
|
||||||
|
narrow=1,
|
||||||
|
sft_half=True,
|
||||||
|
)
|
||||||
|
elif arch == "RestoreFormer":
|
||||||
|
from gfpgan.archs.restoreformer_arch import RestoreFormer
|
||||||
|
|
||||||
|
self.gfpgan = RestoreFormer()
|
||||||
|
|
||||||
|
hub_dir = get_dir()
|
||||||
|
model_dir = os.path.join(hub_dir, "checkpoints")
|
||||||
|
|
||||||
|
# initialize face helper
|
||||||
|
self.face_helper = FaceRestoreHelper(
|
||||||
|
upscale,
|
||||||
|
face_size=512,
|
||||||
|
crop_ratio=(1, 1),
|
||||||
|
det_model="retinaface_resnet50",
|
||||||
|
save_ext="png",
|
||||||
|
use_parse=True,
|
||||||
|
device=self.device,
|
||||||
|
model_rootpath=model_dir,
|
||||||
|
)
|
||||||
|
|
||||||
|
loadnet = torch.load(model_path)
|
||||||
|
if "params_ema" in loadnet:
|
||||||
|
keyname = "params_ema"
|
||||||
|
else:
|
||||||
|
keyname = "params"
|
||||||
|
self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
|
||||||
|
self.gfpgan.eval()
|
||||||
|
self.gfpgan = self.gfpgan.to(self.device)
|
@ -71,6 +71,7 @@ class RealESRGANUpscaler(BasePlugin):
|
|||||||
model_info = REAL_ESRGAN_MODELS[name]
|
model_info = REAL_ESRGAN_MODELS[name]
|
||||||
|
|
||||||
model_path = download_model(model_info["url"], model_info["model_md5"])
|
model_path = download_model(model_info["url"], model_info["model_md5"])
|
||||||
|
logger.info(f"RealESRGAN model path: {model_path}")
|
||||||
|
|
||||||
self.model = RealESRGANer(
|
self.model = RealESRGANer(
|
||||||
scale=model_info["scale"],
|
scale=model_info["scale"],
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from torch.hub import get_dir
|
||||||
|
|
||||||
from lama_cleaner.plugins.base_plugin import BasePlugin
|
from lama_cleaner.plugins.base_plugin import BasePlugin
|
||||||
|
|
||||||
@ -11,6 +13,10 @@ class RemoveBG(BasePlugin):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
from rembg import new_session
|
from rembg import new_session
|
||||||
|
|
||||||
|
hub_dir = get_dir()
|
||||||
|
model_dir = os.path.join(hub_dir, "checkpoints")
|
||||||
|
os.environ["U2NET_HOME"] = model_dir
|
||||||
|
|
||||||
self.session = new_session(model_name="u2net")
|
self.session = new_session(model_name="u2net")
|
||||||
|
|
||||||
def __call__(self, rgb_np_img, files, form):
|
def __call__(self, rgb_np_img, files, form):
|
||||||
|
@ -19,7 +19,13 @@ from lama_cleaner.const import SD15_MODELS
|
|||||||
from lama_cleaner.file_manager import FileManager
|
from lama_cleaner.file_manager import FileManager
|
||||||
from lama_cleaner.model.utils import torch_gc
|
from lama_cleaner.model.utils import torch_gc
|
||||||
from lama_cleaner.model_manager import ModelManager
|
from lama_cleaner.model_manager import ModelManager
|
||||||
from lama_cleaner.plugins import InteractiveSeg, RemoveBG, RealESRGANUpscaler, MakeGIF
|
from lama_cleaner.plugins import (
|
||||||
|
InteractiveSeg,
|
||||||
|
RemoveBG,
|
||||||
|
RealESRGANUpscaler,
|
||||||
|
MakeGIF,
|
||||||
|
GFPGANPlugin,
|
||||||
|
)
|
||||||
from lama_cleaner.schema import Config
|
from lama_cleaner.schema import Config
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -423,6 +429,9 @@ def build_plugins(args):
|
|||||||
plugins[RealESRGANUpscaler.name] = RealESRGANUpscaler(
|
plugins[RealESRGANUpscaler.name] = RealESRGANUpscaler(
|
||||||
args.realesrgan_model, args.realesrgan_device
|
args.realesrgan_model, args.realesrgan_device
|
||||||
)
|
)
|
||||||
|
if args.enable_gfpgan:
|
||||||
|
logger.info(f"Initialize {GFPGANPlugin.name} plugin")
|
||||||
|
plugins[GFPGANPlugin.name] = GFPGANPlugin(args.gfpgan_device)
|
||||||
if args.enable_gif:
|
if args.enable_gif:
|
||||||
logger.info(f"Initialize GIF plugin")
|
logger.info(f"Initialize GIF plugin")
|
||||||
plugins[MakeGIF.name] = MakeGIF()
|
plugins[MakeGIF.name] = MakeGIF()
|
||||||
|
Loading…
Reference in New Issue
Block a user