add model md5 check
This commit is contained in:
parent
64336498ba
commit
ecfecac050
@ -11,6 +11,15 @@ import torch
|
|||||||
from lama_cleaner.const import MPS_SUPPORT_MODELS
|
from lama_cleaner.const import MPS_SUPPORT_MODELS
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from torch.hub import download_url_to_file, get_dir
|
from torch.hub import download_url_to_file, get_dir
|
||||||
|
import hashlib
|
||||||
|
|
||||||
|
|
||||||
|
def md5sum(filename):
|
||||||
|
md5 = hashlib.md5()
|
||||||
|
with open(filename, "rb") as f:
|
||||||
|
for chunk in iter(lambda: f.read(128 * md5.block_size), b""):
|
||||||
|
md5.update(chunk)
|
||||||
|
return md5.hexdigest()
|
||||||
|
|
||||||
|
|
||||||
def switch_mps_device(model_name, device):
|
def switch_mps_device(model_name, device):
|
||||||
@ -33,12 +42,22 @@ def get_cache_path_by_url(url):
|
|||||||
return cached_file
|
return cached_file
|
||||||
|
|
||||||
|
|
||||||
def download_model(url):
|
def download_model(url, model_md5: str = None):
|
||||||
cached_file = get_cache_path_by_url(url)
|
cached_file = get_cache_path_by_url(url)
|
||||||
if not os.path.exists(cached_file):
|
if not os.path.exists(cached_file):
|
||||||
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
||||||
hash_prefix = None
|
hash_prefix = None
|
||||||
download_url_to_file(url, cached_file, hash_prefix, progress=True)
|
download_url_to_file(url, cached_file, hash_prefix, progress=True)
|
||||||
|
if model_md5:
|
||||||
|
_md5 = md5sum(cached_file)
|
||||||
|
if model_md5 == _md5:
|
||||||
|
logger.info(f"Download model success, md5: {_md5}")
|
||||||
|
else:
|
||||||
|
logger.error(
|
||||||
|
f"Download model failed, md5: {_md5}, expected: {model_md5}. Please delete model at {cached_file} and restart lama-cleaner"
|
||||||
|
)
|
||||||
|
exit(-1)
|
||||||
|
|
||||||
return cached_file
|
return cached_file
|
||||||
|
|
||||||
|
|
||||||
@ -48,42 +67,49 @@ def ceil_modulo(x, mod):
|
|||||||
return (x // mod + 1) * mod
|
return (x // mod + 1) * mod
|
||||||
|
|
||||||
|
|
||||||
def \
|
def handle_error(model_path, model_md5, e):
|
||||||
load_jit_model(url_or_path, device):
|
_md5 = md5sum(model_path)
|
||||||
|
if _md5 != model_md5:
|
||||||
|
logger.error(
|
||||||
|
f"Model md5: {_md5}, expected: {model_md5}, please delete {model_path} and restart lama-cleaner."
|
||||||
|
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to load model {model_path},"
|
||||||
|
f"please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}"
|
||||||
|
)
|
||||||
|
exit(-1)
|
||||||
|
|
||||||
|
|
||||||
|
def load_jit_model(url_or_path, device, model_md5: str):
|
||||||
if os.path.exists(url_or_path):
|
if os.path.exists(url_or_path):
|
||||||
model_path = url_or_path
|
model_path = url_or_path
|
||||||
else:
|
else:
|
||||||
model_path = download_model(url_or_path)
|
model_path = download_model(url_or_path, model_md5)
|
||||||
|
|
||||||
logger.info(f"Loading model from: {model_path}")
|
logger.info(f"Loading model from: {model_path}")
|
||||||
try:
|
try:
|
||||||
model = torch.jit.load(model_path, map_location="cpu").to(device)
|
model = torch.jit.load(model_path, map_location="cpu").to(device)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(
|
handle_error(model_path, model_md5, e)
|
||||||
f"Failed to load {model_path}, please delete model and restart lama-cleaner.\n"
|
|
||||||
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
|
|
||||||
f"If all above operations doesn't work, please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}"
|
|
||||||
)
|
|
||||||
exit(-1)
|
|
||||||
model.eval()
|
model.eval()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def load_model(model: torch.nn.Module, url_or_path, device):
|
def load_model(model: torch.nn.Module, url_or_path, device, model_md5):
|
||||||
if os.path.exists(url_or_path):
|
if os.path.exists(url_or_path):
|
||||||
model_path = url_or_path
|
model_path = url_or_path
|
||||||
else:
|
else:
|
||||||
model_path = download_model(url_or_path)
|
model_path = download_model(url_or_path, model_md5)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
logger.info(f"Loading model from: {model_path}")
|
||||||
state_dict = torch.load(model_path, map_location="cpu")
|
state_dict = torch.load(model_path, map_location="cpu")
|
||||||
model.load_state_dict(state_dict, strict=True)
|
model.load_state_dict(state_dict, strict=True)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
logger.info(f"Load model from: {model_path}")
|
except Exception as e:
|
||||||
except:
|
handle_error(model_path, model_md5, e)
|
||||||
logger.error(
|
|
||||||
f"Failed to load {model_path}, delete model and restart lama-cleaner"
|
|
||||||
)
|
|
||||||
exit(-1)
|
|
||||||
model.eval()
|
model.eval()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
@ -156,12 +156,13 @@ INTERACTIVE_SEG_MODEL_URL = os.environ.get(
|
|||||||
"INTERACTIVE_SEG_MODEL_URL",
|
"INTERACTIVE_SEG_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt",
|
"https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt",
|
||||||
)
|
)
|
||||||
|
INTERACTIVE_SEG_MODEL_MD5 = os.environ.get("INTERACTIVE_SEG_MODEL_MD5", "8ca44b6e02bca78f62ec26a3c32376cf")
|
||||||
|
|
||||||
|
|
||||||
class InteractiveSeg:
|
class InteractiveSeg:
|
||||||
def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3):
|
def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3):
|
||||||
device = torch.device('cpu')
|
device = torch.device('cpu')
|
||||||
model = load_jit_model(INTERACTIVE_SEG_MODEL_URL, device).eval()
|
model = load_jit_model(INTERACTIVE_SEG_MODEL_URL, device, INTERACTIVE_SEG_MODEL_MD5).eval()
|
||||||
self.predictor = ISPredictor(model, device,
|
self.predictor = ISPredictor(model, device,
|
||||||
infer_size=infer_size,
|
infer_size=infer_size,
|
||||||
open_kernel_size=open_kernel_size,
|
open_kernel_size=open_kernel_size,
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -16,6 +16,7 @@ LAMA_MODEL_URL = os.environ.get(
|
|||||||
"LAMA_MODEL_URL",
|
"LAMA_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
||||||
)
|
)
|
||||||
|
LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500")
|
||||||
|
|
||||||
|
|
||||||
class LaMa(InpaintModel):
|
class LaMa(InpaintModel):
|
||||||
@ -23,7 +24,7 @@ class LaMa(InpaintModel):
|
|||||||
pad_mod = 8
|
pad_mod = 8
|
||||||
|
|
||||||
def init_model(self, device, **kwargs):
|
def init_model(self, device, **kwargs):
|
||||||
self.model = load_jit_model(LAMA_MODEL_URL, device).eval()
|
self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def is_downloaded() -> bool:
|
def is_downloaded() -> bool:
|
||||||
|
@ -26,17 +26,27 @@ LDM_ENCODE_MODEL_URL = os.environ.get(
|
|||||||
"LDM_ENCODE_MODEL_URL",
|
"LDM_ENCODE_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
|
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
|
||||||
)
|
)
|
||||||
|
LDM_ENCODE_MODEL_MD5 = os.environ.get(
|
||||||
|
"LDM_ENCODE_MODEL_MD5", "23239fc9081956a3e70de56472b3f296"
|
||||||
|
)
|
||||||
|
|
||||||
LDM_DECODE_MODEL_URL = os.environ.get(
|
LDM_DECODE_MODEL_URL = os.environ.get(
|
||||||
"LDM_DECODE_MODEL_URL",
|
"LDM_DECODE_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
|
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
|
||||||
)
|
)
|
||||||
|
LDM_DECODE_MODEL_MD5 = os.environ.get(
|
||||||
|
"LDM_DECODE_MODEL_MD5", "fe419cd15a750d37a4733589d0d3585c"
|
||||||
|
)
|
||||||
|
|
||||||
LDM_DIFFUSION_MODEL_URL = os.environ.get(
|
LDM_DIFFUSION_MODEL_URL = os.environ.get(
|
||||||
"LDM_DIFFUSION_MODEL_URL",
|
"LDM_DIFFUSION_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
|
"https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
LDM_DIFFUSION_MODEL_MD5 = os.environ.get(
|
||||||
|
"LDM_DIFFUSION_MODEL_MD5", "b0afda12bf790c03aba2a7431f11d22d"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class DDPM(nn.Module):
|
class DDPM(nn.Module):
|
||||||
# classic DDPM with Gaussian diffusion, in image space
|
# classic DDPM with Gaussian diffusion, in image space
|
||||||
@ -234,9 +244,15 @@ class LDM(InpaintModel):
|
|||||||
self.device = device
|
self.device = device
|
||||||
|
|
||||||
def init_model(self, device, **kwargs):
|
def init_model(self, device, **kwargs):
|
||||||
self.diffusion_model = load_jit_model(LDM_DIFFUSION_MODEL_URL, device)
|
self.diffusion_model = load_jit_model(
|
||||||
self.cond_stage_model_decode = load_jit_model(LDM_DECODE_MODEL_URL, device)
|
LDM_DIFFUSION_MODEL_URL, device, LDM_DIFFUSION_MODEL_MD5
|
||||||
self.cond_stage_model_encode = load_jit_model(LDM_ENCODE_MODEL_URL, device)
|
)
|
||||||
|
self.cond_stage_model_decode = load_jit_model(
|
||||||
|
LDM_DECODE_MODEL_URL, device, LDM_DECODE_MODEL_MD5
|
||||||
|
)
|
||||||
|
self.cond_stage_model_encode = load_jit_model(
|
||||||
|
LDM_ENCODE_MODEL_URL, device, LDM_ENCODE_MODEL_MD5
|
||||||
|
)
|
||||||
if self.fp16 and "cuda" in str(device):
|
if self.fp16 and "cuda" in str(device):
|
||||||
self.diffusion_model = self.diffusion_model.half()
|
self.diffusion_model = self.diffusion_model.half()
|
||||||
self.cond_stage_model_decode = self.cond_stage_model_decode.half()
|
self.cond_stage_model_decode = self.cond_stage_model_decode.half()
|
||||||
|
@ -11,67 +11,21 @@ from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
|
|||||||
from lama_cleaner.model.base import InpaintModel
|
from lama_cleaner.model.base import InpaintModel
|
||||||
from lama_cleaner.schema import Config
|
from lama_cleaner.schema import Config
|
||||||
|
|
||||||
# def norm(np_img):
|
|
||||||
# return np_img / 255 * 2 - 1.0
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# @torch.no_grad()
|
|
||||||
# def run():
|
|
||||||
# name = 'manga_1080x740.jpg'
|
|
||||||
# img_p = f'/Users/qing/code/github/MangaInpainting/examples/test/imgs/{name}'
|
|
||||||
# mask_p = f'/Users/qing/code/github/MangaInpainting/examples/test/masks/mask_{name}'
|
|
||||||
# erika_model = torch.jit.load('erika.jit')
|
|
||||||
# manga_inpaintor_model = torch.jit.load('manga_inpaintor.jit')
|
|
||||||
#
|
|
||||||
# img = cv2.imread(img_p)
|
|
||||||
# gray_img = cv2.imread(img_p, cv2.IMREAD_GRAYSCALE)
|
|
||||||
# mask = cv2.imread(mask_p, cv2.IMREAD_GRAYSCALE)
|
|
||||||
#
|
|
||||||
# kernel = np.ones((9, 9), dtype=np.uint8)
|
|
||||||
# mask = cv2.dilate(mask, kernel, 2)
|
|
||||||
# # cv2.imwrite("mask.jpg", mask)
|
|
||||||
# # cv2.imshow('dilated_mask', cv2.hconcat([mask, dilated_mask]))
|
|
||||||
# # cv2.waitKey(0)
|
|
||||||
# # exit()
|
|
||||||
#
|
|
||||||
# # img = pad(img)
|
|
||||||
# gray_img = pad(gray_img).astype(np.float32)
|
|
||||||
# mask = pad(mask)
|
|
||||||
#
|
|
||||||
# # pad_mod = 16
|
|
||||||
# import time
|
|
||||||
# start = time.time()
|
|
||||||
# y = erika_model(torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :]))
|
|
||||||
# y = torch.clamp(y, 0, 255)
|
|
||||||
# lines = y.cpu().numpy()
|
|
||||||
# print(f"erika_model time: {time.time() - start}")
|
|
||||||
#
|
|
||||||
# cv2.imwrite('lines.png', lines[0][0])
|
|
||||||
#
|
|
||||||
# start = time.time()
|
|
||||||
# masks = torch.from_numpy(mask[np.newaxis, np.newaxis, :, :])
|
|
||||||
# masks = torch.where(masks > 0.5, torch.tensor(1.0), torch.tensor(0.0))
|
|
||||||
# noise = torch.randn_like(masks)
|
|
||||||
#
|
|
||||||
# images = torch.from_numpy(norm(gray_img)[np.newaxis, np.newaxis, :, :])
|
|
||||||
# lines = torch.from_numpy(norm(lines))
|
|
||||||
#
|
|
||||||
# outputs = manga_inpaintor_model(images, lines, masks, noise)
|
|
||||||
# print(f"manga_inpaintor_model time: {time.time() - start}")
|
|
||||||
#
|
|
||||||
# outputs_merged = (outputs * masks) + (images * (1 - masks))
|
|
||||||
# outputs_merged = outputs_merged * 127.5 + 127.5
|
|
||||||
# outputs_merged = outputs_merged.permute(0, 2, 3, 1)[0].detach().cpu().numpy().astype(np.uint8)
|
|
||||||
# cv2.imwrite(f'output_{name}', outputs_merged)
|
|
||||||
|
|
||||||
|
|
||||||
MANGA_INPAINTOR_MODEL_URL = os.environ.get(
|
MANGA_INPAINTOR_MODEL_URL = os.environ.get(
|
||||||
"MANGA_INPAINTOR_MODEL_URL",
|
"MANGA_INPAINTOR_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit"
|
"https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit",
|
||||||
)
|
)
|
||||||
|
MANGA_INPAINTOR_MODEL_MD5 = os.environ.get(
|
||||||
|
"MANGA_INPAINTOR_MODEL_MD5", "7d8b269c4613b6b3768af714610da86c"
|
||||||
|
)
|
||||||
|
|
||||||
MANGA_LINE_MODEL_URL = os.environ.get(
|
MANGA_LINE_MODEL_URL = os.environ.get(
|
||||||
"MANGA_LINE_MODEL_URL",
|
"MANGA_LINE_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/manga/erika.jit"
|
"https://github.com/Sanster/models/releases/download/manga/erika.jit",
|
||||||
|
)
|
||||||
|
MANGA_LINE_MODEL_MD5 = os.environ.get(
|
||||||
|
"MANGA_LINE_MODEL_MD5", "8f157c142718f11e233d3750a65e0794"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -80,8 +34,12 @@ class Manga(InpaintModel):
|
|||||||
pad_mod = 16
|
pad_mod = 16
|
||||||
|
|
||||||
def init_model(self, device, **kwargs):
|
def init_model(self, device, **kwargs):
|
||||||
self.inpaintor_model = load_jit_model(MANGA_INPAINTOR_MODEL_URL, device)
|
self.inpaintor_model = load_jit_model(
|
||||||
self.line_model = load_jit_model(MANGA_LINE_MODEL_URL, device)
|
MANGA_INPAINTOR_MODEL_URL, device, MANGA_INPAINTOR_MODEL_MD5
|
||||||
|
)
|
||||||
|
self.line_model = load_jit_model(
|
||||||
|
MANGA_LINE_MODEL_URL, device, MANGA_LINE_MODEL_MD5
|
||||||
|
)
|
||||||
self.seed = 42
|
self.seed = 42
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -105,7 +63,9 @@ class Manga(InpaintModel):
|
|||||||
torch.cuda.manual_seed_all(seed)
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
|
||||||
gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
||||||
gray_img = torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)).to(self.device)
|
gray_img = torch.from_numpy(
|
||||||
|
gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)
|
||||||
|
).to(self.device)
|
||||||
start = time.time()
|
start = time.time()
|
||||||
lines = self.line_model(gray_img)
|
lines = self.line_model(gray_img)
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -17,21 +17,33 @@ ZITS_INPAINT_MODEL_URL = os.environ.get(
|
|||||||
"ZITS_INPAINT_MODEL_URL",
|
"ZITS_INPAINT_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
|
"https://github.com/Sanster/models/releases/download/add_zits/zits-inpaint-0717.pt",
|
||||||
)
|
)
|
||||||
|
ZITS_INPAINT_MODEL_MD5 = os.environ.get(
|
||||||
|
"ZITS_INPAINT_MODEL_MD5", "9978cc7157dc29699e42308d675b2154"
|
||||||
|
)
|
||||||
|
|
||||||
ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
|
ZITS_EDGE_LINE_MODEL_URL = os.environ.get(
|
||||||
"ZITS_EDGE_LINE_MODEL_URL",
|
"ZITS_EDGE_LINE_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
|
"https://github.com/Sanster/models/releases/download/add_zits/zits-edge-line-0717.pt",
|
||||||
)
|
)
|
||||||
|
ZITS_EDGE_LINE_MODEL_MD5 = os.environ.get(
|
||||||
|
"ZITS_EDGE_LINE_MODEL_MD5", "55e31af21ba96bbf0c80603c76ea8c5f"
|
||||||
|
)
|
||||||
|
|
||||||
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
|
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL = os.environ.get(
|
||||||
"ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
|
"ZITS_STRUCTURE_UPSAMPLE_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
|
"https://github.com/Sanster/models/releases/download/add_zits/zits-structure-upsample-0717.pt",
|
||||||
)
|
)
|
||||||
|
ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5 = os.environ.get(
|
||||||
|
"ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5", "3d88a07211bd41b2ec8cc0d999f29927"
|
||||||
|
)
|
||||||
|
|
||||||
ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
|
ZITS_WIRE_FRAME_MODEL_URL = os.environ.get(
|
||||||
"ZITS_WIRE_FRAME_MODEL_URL",
|
"ZITS_WIRE_FRAME_MODEL_URL",
|
||||||
"https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
|
"https://github.com/Sanster/models/releases/download/add_zits/zits-wireframe-0717.pt",
|
||||||
)
|
)
|
||||||
|
ZITS_WIRE_FRAME_MODEL_MD5 = os.environ.get(
|
||||||
|
"ZITS_WIRE_FRAME_MODEL_MD5", "a9727c63a8b48b65c905d351b21ce46b"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def resize(img, height, width, center_crop=False):
|
def resize(img, height, width, center_crop=False):
|
||||||
@ -219,12 +231,12 @@ class ZITS(InpaintModel):
|
|||||||
self.sample_edge_line_iterations = 1
|
self.sample_edge_line_iterations = 1
|
||||||
|
|
||||||
def init_model(self, device, **kwargs):
|
def init_model(self, device, **kwargs):
|
||||||
self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device)
|
self.wireframe = load_jit_model(ZITS_WIRE_FRAME_MODEL_URL, device, ZITS_WIRE_FRAME_MODEL_MD5)
|
||||||
self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device)
|
self.edge_line = load_jit_model(ZITS_EDGE_LINE_MODEL_URL, device, ZITS_EDGE_LINE_MODEL_MD5)
|
||||||
self.structure_upsample = load_jit_model(
|
self.structure_upsample = load_jit_model(
|
||||||
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device
|
ZITS_STRUCTURE_UPSAMPLE_MODEL_URL, device, ZITS_STRUCTURE_UPSAMPLE_MODEL_MD5
|
||||||
)
|
)
|
||||||
self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device)
|
self.inpaint = load_jit_model(ZITS_INPAINT_MODEL_URL, device, ZITS_INPAINT_MODEL_MD5)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def is_downloaded() -> bool:
|
def is_downloaded() -> bool:
|
||||||
|
54
lama_cleaner/tests/test_model_md5.py
Normal file
54
lama_cleaner/tests/test_model_md5.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
def test_load_model():
|
||||||
|
from lama_cleaner.interactive_seg import InteractiveSeg
|
||||||
|
from lama_cleaner.model_manager import ModelManager
|
||||||
|
|
||||||
|
interactive_seg_model = InteractiveSeg()
|
||||||
|
|
||||||
|
models = [
|
||||||
|
"lama",
|
||||||
|
"ldm",
|
||||||
|
"zits",
|
||||||
|
"mat",
|
||||||
|
"fcf",
|
||||||
|
"manga",
|
||||||
|
]
|
||||||
|
for m in models:
|
||||||
|
ModelManager(
|
||||||
|
name=m,
|
||||||
|
device="cpu",
|
||||||
|
no_half=False,
|
||||||
|
hf_access_token="",
|
||||||
|
disable_nsfw=False,
|
||||||
|
sd_cpu_textencoder=True,
|
||||||
|
sd_run_local=True,
|
||||||
|
local_files_only=True,
|
||||||
|
cpu_offload=True,
|
||||||
|
enable_xformers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# def create_empty_file(tmp_dir, name):
|
||||||
|
# tmp_model_dir = os.path.join(tmp_dir, "torch", "hub", "checkpoints")
|
||||||
|
# Path(tmp_model_dir).mkdir(exist_ok=True, parents=True)
|
||||||
|
# path = os.path.join(tmp_model_dir, name)
|
||||||
|
# with open(path, "w") as f:
|
||||||
|
# f.write("1")
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# def test_load_model_error():
|
||||||
|
# MODELS = [
|
||||||
|
# ("big-lama.pt", "e3aa4aaa15225a33ec84f9f4bc47e500"),
|
||||||
|
# ("cond_stage_model_encode.pt", "23239fc9081956a3e70de56472b3f296"),
|
||||||
|
# ("cond_stage_model_decode.pt", "fe419cd15a750d37a4733589d0d3585c"),
|
||||||
|
# ("diffusion.pt", "b0afda12bf790c03aba2a7431f11d22d"),
|
||||||
|
# ]
|
||||||
|
# with tempfile.TemporaryDirectory() as tmp_dir:
|
||||||
|
# os.environ["XDG_CACHE_HOME"] = tmp_dir
|
||||||
|
# for name, md5 in MODELS:
|
||||||
|
# create_empty_file(tmp_dir, name)
|
||||||
|
# test_load_model()
|
Loading…
Reference in New Issue
Block a user