add controlnet 1.1
This commit is contained in:
parent
05b3514f1c
commit
f4eedbe3b1
@ -42,23 +42,43 @@ NAMES_MAP = {
|
||||
"realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting",
|
||||
}
|
||||
|
||||
NATIVE_NAMES_MAP = {
|
||||
"sd1.5": "runwayml/stable-diffusion-v1-5",
|
||||
"anything4": "andite/anything-v4.0",
|
||||
"realisticVision1.4": "SG161222/Realistic_Vision_V1.4",
|
||||
}
|
||||
|
||||
def load_from_local_model(local_model_path, torch_dtype, controlnet):
|
||||
|
||||
def make_inpaint_condition(image, image_mask):
|
||||
"""
|
||||
image: [H, W, C] RGB
|
||||
mask: [H, W, 1] 255 means area to repaint
|
||||
"""
|
||||
image = image.astype(np.float32) / 255.0
|
||||
image[image_mask[:, :, -1] > 128] = -1.0 # set as masked pixel
|
||||
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
return image
|
||||
|
||||
|
||||
def load_from_local_model(
|
||||
local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint
|
||||
):
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
load_pipeline_from_original_stable_diffusion_ckpt,
|
||||
download_from_original_stable_diffusion_ckpt,
|
||||
)
|
||||
from .pipeline import StableDiffusionControlNetInpaintPipeline
|
||||
|
||||
logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline")
|
||||
|
||||
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
pipe = download_from_original_stable_diffusion_ckpt(
|
||||
local_model_path,
|
||||
num_in_channels=9,
|
||||
num_in_channels=4 if is_native_control_inpaint else 9,
|
||||
from_safetensors=local_model_path.endswith("safetensors"),
|
||||
device="cpu",
|
||||
load_safety_checker=False
|
||||
)
|
||||
|
||||
inpaint_pipe = StableDiffusionControlNetInpaintPipeline(
|
||||
inpaint_pipe = pipe_class(
|
||||
vae=pipe.vae,
|
||||
text_encoder=pipe.text_encoder,
|
||||
tokenizer=pipe.tokenizer,
|
||||
@ -81,9 +101,6 @@ class ControlNet(DiffusionInpaintModel):
|
||||
min_size = 512
|
||||
|
||||
def init_model(self, device: torch.device, **kwargs):
|
||||
from .pipeline import StableDiffusionControlNetInpaintPipeline
|
||||
|
||||
model_id = NAMES_MAP[kwargs["name"]]
|
||||
fp16 = not kwargs.get("no_half", False)
|
||||
|
||||
model_kwargs = {
|
||||
@ -102,17 +119,35 @@ class ControlNet(DiffusionInpaintModel):
|
||||
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
|
||||
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
||||
|
||||
sd_controlnet_method = kwargs["sd_controlnet_method"]
|
||||
|
||||
if sd_controlnet_method == "control_v11p_sd15_inpaint":
|
||||
from diffusers import StableDiffusionControlNetPipeline as PipeClass
|
||||
|
||||
self.is_native_control_inpaint = True
|
||||
else:
|
||||
from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass
|
||||
|
||||
self.is_native_control_inpaint = False
|
||||
|
||||
if self.is_native_control_inpaint:
|
||||
model_id = NATIVE_NAMES_MAP[kwargs["name"]]
|
||||
else:
|
||||
model_id = NAMES_MAP[kwargs["name"]]
|
||||
|
||||
controlnet = ControlNetModel.from_pretrained(
|
||||
f"lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype
|
||||
f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype
|
||||
)
|
||||
if kwargs.get("sd_local_model_path", None):
|
||||
self.model = load_from_local_model(
|
||||
kwargs["sd_local_model_path"],
|
||||
torch_dtype=torch_dtype,
|
||||
controlnet=controlnet,
|
||||
pipe_class=PipeClass,
|
||||
is_native_control_inpaint=self.is_native_control_inpaint,
|
||||
)
|
||||
else:
|
||||
self.model = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
||||
self.model = PipeClass.from_pretrained(
|
||||
model_id,
|
||||
controlnet=controlnet,
|
||||
revision="fp16" if use_gpu and fp16 else "main",
|
||||
@ -156,28 +191,45 @@ class ControlNet(DiffusionInpaintModel):
|
||||
|
||||
img_h, img_w = image.shape[:2]
|
||||
|
||||
canny_image = cv2.Canny(image, 100, 200)
|
||||
canny_image = canny_image[:, :, None]
|
||||
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
||||
canny_image = PIL.Image.fromarray(canny_image)
|
||||
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
|
||||
image = PIL.Image.fromarray(image)
|
||||
if self.is_native_control_inpaint:
|
||||
control_image = make_inpaint_condition(image, mask)
|
||||
output = self.model(
|
||||
prompt=config.prompt,
|
||||
image=control_image,
|
||||
height=img_h,
|
||||
width=img_w,
|
||||
num_inference_steps=config.sd_steps,
|
||||
guidance_scale=config.sd_guidance_scale,
|
||||
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
||||
negative_prompt=config.negative_prompt,
|
||||
generator=torch.manual_seed(config.sd_seed),
|
||||
output_type="np.array",
|
||||
).images[0]
|
||||
else:
|
||||
canny_image = cv2.Canny(image, 100, 200)
|
||||
canny_image = canny_image[:, :, None]
|
||||
canny_image = np.concatenate(
|
||||
[canny_image, canny_image, canny_image], axis=2
|
||||
)
|
||||
canny_image = PIL.Image.fromarray(canny_image)
|
||||
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
|
||||
image = PIL.Image.fromarray(image)
|
||||
|
||||
output = self.model(
|
||||
image=image,
|
||||
control_image=canny_image,
|
||||
prompt=config.prompt,
|
||||
negative_prompt=config.negative_prompt,
|
||||
mask_image=mask_image,
|
||||
num_inference_steps=config.sd_steps,
|
||||
guidance_scale=config.sd_guidance_scale,
|
||||
output_type="np.array",
|
||||
callback=self.callback,
|
||||
height=img_h,
|
||||
width=img_w,
|
||||
generator=torch.manual_seed(config.sd_seed),
|
||||
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
||||
).images[0]
|
||||
output = self.model(
|
||||
image=image,
|
||||
control_image=canny_image,
|
||||
prompt=config.prompt,
|
||||
negative_prompt=config.negative_prompt,
|
||||
mask_image=mask_image,
|
||||
num_inference_steps=config.sd_steps,
|
||||
guidance_scale=config.sd_guidance_scale,
|
||||
output_type="np.array",
|
||||
callback=self.callback,
|
||||
height=img_h,
|
||||
width=img_w,
|
||||
generator=torch.manual_seed(config.sd_seed),
|
||||
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
||||
).images[0]
|
||||
|
||||
output = (output * 255).round().astype("uint8")
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
|
@ -38,6 +38,14 @@ def parse_args():
|
||||
"--sd-cpu-textencoder", action="store_true", help=SD_CPU_TEXTENCODER_HELP
|
||||
)
|
||||
parser.add_argument("--sd-controlnet", action="store_true", help=SD_CONTROLNET_HELP)
|
||||
parser.add_argument(
|
||||
"--sd-controlnet-method",
|
||||
default="control_v11p_sd15_inpaint",
|
||||
choices=[
|
||||
"control_v11p_sd15_canny",
|
||||
"control_v11p_sd15_inpaint",
|
||||
],
|
||||
)
|
||||
parser.add_argument("--sd-local-model-path", default=None, help=SD_LOCAL_MODEL_HELP)
|
||||
parser.add_argument(
|
||||
"--local-files-only", action="store_true", help=LOCAL_FILES_ONLY_HELP
|
||||
@ -86,7 +94,7 @@ def parse_args():
|
||||
"--interactive-seg-model",
|
||||
default="vit_l",
|
||||
choices=AVAILABLE_INTERACTIVE_SEG_MODELS,
|
||||
help=INTERACTIVE_SEG_MODEL_HELP
|
||||
help=INTERACTIVE_SEG_MODEL_HELP,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--interactive-seg-device",
|
||||
@ -168,11 +176,11 @@ def parse_args():
|
||||
if args.config_installer:
|
||||
if args.installer_config is None:
|
||||
parser.error(
|
||||
f"args.config_installer==True, must set args.installer_config to store config file"
|
||||
"args.config_installer==True, must set args.installer_config to store config file"
|
||||
)
|
||||
from lama_cleaner.web_config import main
|
||||
|
||||
logger.info(f"Launching installer web config page")
|
||||
logger.info("Launching installer web config page")
|
||||
main(args.installer_config)
|
||||
exit()
|
||||
|
||||
@ -194,10 +202,6 @@ def parse_args():
|
||||
"torch.cuda.is_available() is False, please use --device cpu or check your pytorch installation"
|
||||
)
|
||||
|
||||
if args.sd_controlnet:
|
||||
if args.model not in SD15_MODELS:
|
||||
logger.warning(f"--sd_controlnet only support {SD15_MODELS}")
|
||||
|
||||
if args.sd_local_model_path and args.model == "sd1.5":
|
||||
if not os.path.exists(args.sd_local_model_path):
|
||||
parser.error(
|
||||
|
@ -537,6 +537,7 @@ def main(args):
|
||||
model = ModelManager(
|
||||
name=args.model,
|
||||
sd_controlnet=args.sd_controlnet,
|
||||
sd_controlnet_method=args.sd_controlnet_method,
|
||||
device=device,
|
||||
no_half=args.no_half,
|
||||
hf_access_token=args.hf_access_token,
|
||||
|
@ -7,7 +7,7 @@ pydantic
|
||||
rich
|
||||
loguru
|
||||
yacs
|
||||
diffusers[torch]==0.14.0
|
||||
diffusers==0.16.1
|
||||
transformers==4.27.4
|
||||
gradio
|
||||
piexif==1.1.3
|
||||
|
Loading…
Reference in New Issue
Block a user