diff --git a/iopaint/model/anytext/anytext_model.py b/iopaint/model/anytext/anytext_model.py new file mode 100644 index 0000000..e69de29 diff --git a/iopaint/model/anytext/anytext_pipeline.py b/iopaint/model/anytext/anytext_pipeline.py new file mode 100644 index 0000000..9e82fe0 --- /dev/null +++ b/iopaint/model/anytext/anytext_pipeline.py @@ -0,0 +1,395 @@ +""" +AnyText: Multilingual Visual Text Generation And Editing +Paper: https://arxiv.org/abs/2311.03054 +Code: https://github.com/tyxsspa/AnyText +Copyright (c) Alibaba, Inc. and its affiliates. +""" +import os + +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" +import torch +import random +import re +import numpy as np +import cv2 +import einops +import time +from PIL import ImageFont +from iopaint.model.anytext.cldm.model import create_model, load_state_dict +from iopaint.model.anytext.cldm.ddim_hacked import DDIMSampler +from iopaint.model.anytext.utils import ( + resize_image, + check_channels, + draw_glyph, + draw_glyph2, +) + + +BBOX_MAX_NUM = 8 +PLACE_HOLDER = "*" +max_chars = 20 + + +class AnyTextPipeline: + def __init__(self, cfg_path, model_dir, font_path, device, use_fp16=True): + self.cfg_path = cfg_path + self.model_dir = model_dir + self.font_path = font_path + self.use_fp16 = use_fp16 + self.device = device + self.init_model() + + """ + return: + result: list of images in numpy.ndarray format + rst_code: 0: normal -1: error 1:warning + rst_info: string of error or warning + debug_info: string for debug, only valid if show_debug=True + """ + + def __call__(self, input_tensor, **forward_params): + tic = time.time() + str_warning = "" + # get inputs + seed = input_tensor.get("seed", -1) + if seed == -1: + seed = random.randint(0, 99999999) + # seed_everything(seed) + prompt = input_tensor.get("prompt") + draw_pos = input_tensor.get("draw_pos") + ori_image = input_tensor.get("ori_image") + + mode = forward_params.get("mode") + sort_priority = forward_params.get("sort_priority", "↕") + show_debug = forward_params.get("show_debug", False) + revise_pos = forward_params.get("revise_pos", False) + img_count = forward_params.get("image_count", 4) + ddim_steps = forward_params.get("ddim_steps", 20) + w = forward_params.get("image_width", 512) + h = forward_params.get("image_height", 512) + strength = forward_params.get("strength", 1.0) + cfg_scale = forward_params.get("cfg_scale", 9.0) + eta = forward_params.get("eta", 0.0) + a_prompt = forward_params.get( + "a_prompt", + "best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks", + ) + n_prompt = forward_params.get( + "n_prompt", + "low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture", + ) + + prompt, texts = self.modify_prompt(prompt) + if prompt is None and texts is None: + return ( + None, + -1, + "You have input Chinese prompt but the translator is not loaded!", + "", + ) + n_lines = len(texts) + if mode in ["text-generation", "gen"]: + edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image + elif mode in ["text-editing", "edit"]: + if draw_pos is None or ori_image is None: + return ( + None, + -1, + "Reference image and position image are needed for text editing!", + "", + ) + if isinstance(ori_image, str): + ori_image = cv2.imread(ori_image)[..., ::-1] + assert ( + ori_image is not None + ), f"Can't read ori_image image from{ori_image}!" + elif isinstance(ori_image, torch.Tensor): + ori_image = ori_image.cpu().numpy() + else: + assert isinstance( + ori_image, np.ndarray + ), f"Unknown format of ori_image: {type(ori_image)}" + edit_image = ori_image.clip(1, 255) # for mask reason + edit_image = check_channels(edit_image) + edit_image = resize_image( + edit_image, max_length=768 + ) # make w h multiple of 64, resize if w or h > max_length + h, w = edit_image.shape[:2] # change h, w by input ref_img + # preprocess pos_imgs(if numpy, make sure it's white pos in black bg) + if draw_pos is None: + pos_imgs = np.zeros((w, h, 1)) + if isinstance(draw_pos, str): + draw_pos = cv2.imread(draw_pos)[..., ::-1] + assert draw_pos is not None, f"Can't read draw_pos image from{draw_pos}!" + pos_imgs = 255 - draw_pos + elif isinstance(draw_pos, torch.Tensor): + pos_imgs = draw_pos.cpu().numpy() + else: + assert isinstance( + draw_pos, np.ndarray + ), f"Unknown format of draw_pos: {type(draw_pos)}" + pos_imgs = pos_imgs[..., 0:1] + pos_imgs = cv2.convertScaleAbs(pos_imgs) + _, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY) + # seprate pos_imgs + pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority) + if len(pos_imgs) == 0: + pos_imgs = [np.zeros((h, w, 1))] + if len(pos_imgs) < n_lines: + if n_lines == 1 and texts[0] == " ": + pass # text-to-image without text + else: + return ( + None, + -1, + f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!", + "", + ) + elif len(pos_imgs) > n_lines: + str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt." + # get pre_pos, poly_list, hint that needed for anytext + pre_pos = [] + poly_list = [] + for input_pos in pos_imgs: + if input_pos.mean() != 0: + input_pos = ( + input_pos[..., np.newaxis] + if len(input_pos.shape) == 2 + else input_pos + ) + poly, pos_img = self.find_polygon(input_pos) + pre_pos += [pos_img / 255.0] + poly_list += [poly] + else: + pre_pos += [np.zeros((h, w, 1))] + poly_list += [None] + np_hint = np.sum(pre_pos, axis=0).clip(0, 1) + # prepare info dict + info = {} + info["glyphs"] = [] + info["gly_line"] = [] + info["positions"] = [] + info["n_lines"] = [len(texts)] * img_count + gly_pos_imgs = [] + for i in range(len(texts)): + text = texts[i] + if len(text) > max_chars: + str_warning = ( + f'"{text}" length > max_chars: {max_chars}, will be cut off...' + ) + text = text[:max_chars] + gly_scale = 2 + if pre_pos[i].mean() != 0: + gly_line = draw_glyph(self.font, text) + glyphs = draw_glyph2( + self.font, + text, + poly_list[i], + scale=gly_scale, + width=w, + height=h, + add_space=False, + ) + gly_pos_img = cv2.drawContours( + glyphs * 255, [poly_list[i] * gly_scale], 0, (255, 255, 255), 1 + ) + if revise_pos: + resize_gly = cv2.resize( + glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0]) + ) + new_pos = cv2.morphologyEx( + (resize_gly * 255).astype(np.uint8), + cv2.MORPH_CLOSE, + kernel=np.ones( + (resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), + dtype=np.uint8, + ), + iterations=1, + ) + new_pos = ( + new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos + ) + contours, _ = cv2.findContours( + new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE + ) + if len(contours) != 1: + str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..." + else: + rect = cv2.minAreaRect(contours[0]) + poly = np.int0(cv2.boxPoints(rect)) + pre_pos[i] = ( + cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0 + ) + gly_pos_img = cv2.drawContours( + glyphs * 255, [poly * gly_scale], 0, (255, 255, 255), 1 + ) + gly_pos_imgs += [gly_pos_img] # for show + else: + glyphs = np.zeros((h * gly_scale, w * gly_scale, 1)) + gly_line = np.zeros((80, 512, 1)) + gly_pos_imgs += [ + np.zeros((h * gly_scale, w * gly_scale, 1)) + ] # for show + pos = pre_pos[i] + info["glyphs"] += [self.arr2tensor(glyphs, img_count)] + info["gly_line"] += [self.arr2tensor(gly_line, img_count)] + info["positions"] += [self.arr2tensor(pos, img_count)] + # get masked_x + masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint) + masked_img = np.transpose(masked_img, (2, 0, 1)) + masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device) + if self.use_fp16: + masked_img = masked_img.half() + encoder_posterior = self.model.encode_first_stage(masked_img[None, ...]) + masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach() + if self.use_fp16: + masked_x = masked_x.half() + info["masked_x"] = torch.cat([masked_x for _ in range(img_count)], dim=0) + + hint = self.arr2tensor(np_hint, img_count) + cond = self.model.get_learned_conditioning( + dict( + c_concat=[hint], + c_crossattn=[[prompt + " , " + a_prompt] * img_count], + text_info=info, + ) + ) + un_cond = self.model.get_learned_conditioning( + dict(c_concat=[hint], c_crossattn=[[n_prompt] * img_count], text_info=info) + ) + shape = (4, h // 8, w // 8) + self.model.control_scales = [strength] * 13 + samples, intermediates = self.ddim_sampler.sample( + ddim_steps, + img_count, + shape, + cond, + verbose=False, + eta=eta, + unconditional_guidance_scale=cfg_scale, + unconditional_conditioning=un_cond, + ) + if self.use_fp16: + samples = samples.half() + x_samples = self.model.decode_first_stage(samples) + x_samples = ( + (einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5) + .cpu() + .numpy() + .clip(0, 255) + .astype(np.uint8) + ) + results = [x_samples[i] for i in range(img_count)] + if ( + mode == "edit" and False + ): # replace backgound in text editing but not ideal yet + results = [r * np_hint + edit_image * (1 - np_hint) for r in results] + results = [r.clip(0, 255).astype(np.uint8) for r in results] + if len(gly_pos_imgs) > 0 and show_debug: + glyph_bs = np.stack(gly_pos_imgs, axis=2) + glyph_img = np.sum(glyph_bs, axis=2) * 255 + glyph_img = glyph_img.clip(0, 255).astype(np.uint8) + results += [np.repeat(glyph_img, 3, axis=2)] + # debug_info + if not show_debug: + debug_info = "" + else: + input_prompt = prompt + for t in texts: + input_prompt = input_prompt.replace("*", f'"{t}"', 1) + debug_info = f'Prompt: {input_prompt}
\ + Size: {w}x{h}
\ + Image Count: {img_count}
\ + Seed: {seed}
\ + Use FP16: {self.use_fp16}
\ + Cost Time: {(time.time()-tic):.2f}s' + rst_code = 1 if str_warning else 0 + return results, rst_code, str_warning, debug_info + + def init_model(self): + font_path = self.font_path + self.font = ImageFont.truetype(font_path, size=60) + cfg_path = self.cfg_path + ckpt_path = os.path.join(self.model_dir, "anytext_v1.1.ckpt") + clip_path = os.path.join(self.model_dir, "clip-vit-large-patch14") + self.model = create_model( + cfg_path, + device=self.device, + cond_stage_path=clip_path, + use_fp16=self.use_fp16, + ) + if self.use_fp16: + self.model = self.model.half() + self.model.load_state_dict( + load_state_dict(ckpt_path, location=self.device), strict=False + ) + self.model.eval() + self.model = self.model.to(self.device) + self.ddim_sampler = DDIMSampler(self.model, device=self.device) + + def modify_prompt(self, prompt): + prompt = prompt.replace("“", '"') + prompt = prompt.replace("”", '"') + p = '"(.*?)"' + strs = re.findall(p, prompt) + if len(strs) == 0: + strs = [" "] + else: + for s in strs: + prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1) + # if self.is_chinese(prompt): + # if self.trans_pipe is None: + # return None, None + # old_prompt = prompt + # prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1] + # print(f"Translate: {old_prompt} --> {prompt}") + return prompt, strs + + # def is_chinese(self, text): + # text = checker._clean_text(text) + # for char in text: + # cp = ord(char) + # if checker._is_chinese_char(cp): + # return True + # return False + + def separate_pos_imgs(self, img, sort_priority, gap=102): + num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img) + components = [] + for label in range(1, num_labels): + component = np.zeros_like(img) + component[labels == label] = 255 + components.append((component, centroids[label])) + if sort_priority == "↕": + fir, sec = 1, 0 # top-down first + elif sort_priority == "↔": + fir, sec = 0, 1 # left-right first + components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap)) + sorted_components = [c[0] for c in components] + return sorted_components + + def find_polygon(self, image, min_rect=False): + contours, hierarchy = cv2.findContours( + image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE + ) + max_contour = max(contours, key=cv2.contourArea) # get contour with max area + if min_rect: + # get minimum enclosing rectangle + rect = cv2.minAreaRect(max_contour) + poly = np.int0(cv2.boxPoints(rect)) + else: + # get approximate polygon + epsilon = 0.01 * cv2.arcLength(max_contour, True) + poly = cv2.approxPolyDP(max_contour, epsilon, True) + n, _, xy = poly.shape + poly = poly.reshape(n, xy) + cv2.drawContours(image, [poly], -1, 255, -1) + return poly, image + + def arr2tensor(self, arr, bs): + arr = np.transpose(arr, (2, 0, 1)) + _arr = torch.from_numpy(arr.copy()).float().to(self.device) + if self.use_fp16: + _arr = _arr.half() + _arr = torch.stack([_arr for _ in range(bs)], dim=0) + return _arr diff --git a/iopaint/model/anytext/anytext_sd15.yaml b/iopaint/model/anytext/anytext_sd15.yaml new file mode 100644 index 0000000..a017d90 --- /dev/null +++ b/iopaint/model/anytext/anytext_sd15.yaml @@ -0,0 +1,99 @@ +model: + target: iopaint.model.anytext.cldm.cldm.ControlLDM + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "img" + cond_stage_key: "caption" + control_key: "hint" + glyph_key: "glyphs" + position_key: "positions" + image_size: 64 + channels: 4 + cond_stage_trainable: true # need be true when embedding_manager is valid + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + only_mid_control: False + loss_alpha: 0 # perceptual loss, 0.003 + loss_beta: 0 # ctc loss + latin_weight: 1.0 # latin text line may need smaller weigth + with_step_weight: true + use_vae_upsample: true + embedding_manager_config: + target: iopaint.model.anytext.cldm.embedding_manager.EmbeddingManager + params: + valid: true # v6 + emb_type: ocr # ocr, vit, conv + glyph_channels: 1 + position_channels: 1 + add_pos: false + placeholder_string: '*' + + control_stage_config: + target: iopaint.model.anytext.cldm.cldm.ControlNet + params: + image_size: 32 # unused + in_channels: 4 + model_channels: 320 + glyph_channels: 1 + position_channels: 1 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + unet_config: + target: iopaint.model.anytext.cldm.cldm.ControlledUnetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: iopaint.model.anytext.ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedderT3 + params: + version: ./models/clip-vit-large-patch14 + use_vision: false # v6 diff --git a/iopaint/model/anytext/cldm/cldm.py b/iopaint/model/anytext/cldm/cldm.py new file mode 100644 index 0000000..ad9692a --- /dev/null +++ b/iopaint/model/anytext/cldm/cldm.py @@ -0,0 +1,630 @@ +import os +from pathlib import Path + +import einops +import torch +import torch as th +import torch.nn as nn +import copy +from easydict import EasyDict as edict + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import ( + conv_nd, + linear, + zero_module, + timestep_embedding, +) + +from einops import rearrange, repeat +from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer +from iopaint.model.anytext.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock +from iopaint.model.anytext.ldm.models.diffusion.ddpm import LatentDiffusion +from iopaint.model.anytext.ldm.util import log_txt_as_img, exists, instantiate_from_config +from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler +from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution +from .recognizer import TextRecognizer, create_predictor + +CURRENT_DIR = Path(os.path.dirname(os.path.abspath(__file__))) + + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +class ControlledUnetModel(UNetModel): + def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): + hs = [] + with torch.no_grad(): + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + if self.use_fp16: + t_emb = t_emb.half() + emb = self.time_embed(t_emb) + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + + if control is not None: + h += control.pop() + + for i, module in enumerate(self.output_blocks): + if only_mid_control or control is None: + h = torch.cat([h, hs.pop()], dim=1) + else: + h = torch.cat([h, hs.pop() + control.pop()], dim=1) + h = module(h, emb, context) + + h = h.type(x.dtype) + return self.out(h) + + +class ControlNet(nn.Module): + def __init__( + self, + image_size, + in_channels, + model_channels, + glyph_channels, + position_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + use_checkpoint=False, + use_fp16=False, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + disable_middle_self_attn=False, + use_linear_in_transformer=False, + ): + super().__init__() + if use_spatial_transformer: + assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + from omegaconf.listconfig import ListConfig + if type(context_dim) == ListConfig: + context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + self.dims = dims + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError("provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult") + self.num_res_blocks = num_res_blocks + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) + print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " + f"This option has LESS priority than attention_resolutions {attention_resolutions}, " + f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " + f"attention will still not be set.") + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.use_checkpoint = use_checkpoint + self.use_fp16 = use_fp16 + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) + + self.glyph_block = TimestepEmbedSequential( + conv_nd(dims, glyph_channels, 8, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 8, 8, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 8, 16, 3, padding=1, stride=2), + nn.SiLU(), + conv_nd(dims, 16, 16, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 16, 32, 3, padding=1, stride=2), + nn.SiLU(), + conv_nd(dims, 32, 32, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 32, 96, 3, padding=1, stride=2), + nn.SiLU(), + conv_nd(dims, 96, 96, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 96, 256, 3, padding=1, stride=2), + nn.SiLU(), + ) + + self.position_block = TimestepEmbedSequential( + conv_nd(dims, position_channels, 8, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 8, 8, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 8, 16, 3, padding=1, stride=2), + nn.SiLU(), + conv_nd(dims, 16, 16, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 16, 32, 3, padding=1, stride=2), + nn.SiLU(), + conv_nd(dims, 32, 32, 3, padding=1), + nn.SiLU(), + conv_nd(dims, 32, 64, 3, padding=1, stride=2), + nn.SiLU(), + ) + + self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1)) + + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, + disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self.zero_convs.append(self.make_zero_conv(ch)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + self.zero_convs.append(self.make_zero_conv(ch)) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, + disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self.middle_block_out = self.make_zero_conv(ch) + self._feature_size += ch + + def make_zero_conv(self, channels): + return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) + + def forward(self, x, hint, text_info, timesteps, context, **kwargs): + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + if self.use_fp16: + t_emb = t_emb.half() + emb = self.time_embed(t_emb) + + # guided_hint from text_info + B, C, H, W = x.shape + glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True) + positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True) + enc_glyph = self.glyph_block(glyphs, emb, context) + enc_pos = self.position_block(positions, emb, context) + guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1)) + + outs = [] + + h = x.type(self.dtype) + for module, zero_conv in zip(self.input_blocks, self.zero_convs): + if guided_hint is not None: + h = module(h, emb, context) + h += guided_hint + guided_hint = None + else: + h = module(h, emb, context) + outs.append(zero_conv(h, emb, context)) + + h = self.middle_block(h, emb, context) + outs.append(self.middle_block_out(h, emb, context)) + + return outs + + +class ControlLDM(LatentDiffusion): + + def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs): + self.use_fp16 = kwargs.pop('use_fp16', False) + super().__init__(*args, **kwargs) + self.control_model = instantiate_from_config(control_stage_config) + self.control_key = control_key + self.glyph_key = glyph_key + self.position_key = position_key + self.only_mid_control = only_mid_control + self.control_scales = [1.0] * 13 + self.loss_alpha = loss_alpha + self.loss_beta = loss_beta + self.with_step_weight = with_step_weight + self.use_vae_upsample = use_vae_upsample + self.latin_weight = latin_weight + + if embedding_manager_config is not None and embedding_manager_config.params.valid: + self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model) + for param in self.embedding_manager.embedding_parameters(): + param.requires_grad = True + else: + self.embedding_manager = None + if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager: + if embedding_manager_config.params.emb_type == 'ocr': + self.text_predictor = create_predictor().eval() + args = edict() + args.rec_image_shape = "3, 48, 320" + args.rec_batch_num = 6 + args.rec_char_dict_path = str(CURRENT_DIR.parent / "ocr_recog" / "ppocr_keys_v1.txt") + args.use_fp16 = self.use_fp16 + self.cn_recognizer = TextRecognizer(args, self.text_predictor) + for param in self.text_predictor.parameters(): + param.requires_grad = False + if self.embedding_manager: + self.embedding_manager.recog = self.cn_recognizer + + @torch.no_grad() + def get_input(self, batch, k, bs=None, *args, **kwargs): + if self.embedding_manager is None: # fill in full caption + self.fill_caption(batch) + x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs) + control = batch[self.control_key] # for log_images and loss_alpha, not real control + if bs is not None: + control = control[:bs] + control = control.to(self.device) + control = einops.rearrange(control, 'b h w c -> b c h w') + control = control.to(memory_format=torch.contiguous_format).float() + + inv_mask = batch['inv_mask'] + if bs is not None: + inv_mask = inv_mask[:bs] + inv_mask = inv_mask.to(self.device) + inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w') + inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float() + + glyphs = batch[self.glyph_key] + gly_line = batch['gly_line'] + positions = batch[self.position_key] + n_lines = batch['n_lines'] + language = batch['language'] + texts = batch['texts'] + assert len(glyphs) == len(positions) + for i in range(len(glyphs)): + if bs is not None: + glyphs[i] = glyphs[i][:bs] + gly_line[i] = gly_line[i][:bs] + positions[i] = positions[i][:bs] + n_lines = n_lines[:bs] + glyphs[i] = glyphs[i].to(self.device) + gly_line[i] = gly_line[i].to(self.device) + positions[i] = positions[i].to(self.device) + glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w') + gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w') + positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w') + glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float() + gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float() + positions[i] = positions[i].to(memory_format=torch.contiguous_format).float() + info = {} + info['glyphs'] = glyphs + info['positions'] = positions + info['n_lines'] = n_lines + info['language'] = language + info['texts'] = texts + info['img'] = batch['img'] # nhwc, (-1,1) + info['masked_x'] = mx + info['gly_line'] = gly_line + info['inv_mask'] = inv_mask + return x, dict(c_crossattn=[c], c_concat=[control], text_info=info) + + def apply_model(self, x_noisy, t, cond, *args, **kwargs): + assert isinstance(cond, dict) + diffusion_model = self.model.diffusion_model + _cond = torch.cat(cond['c_crossattn'], 1) + _hint = torch.cat(cond['c_concat'], 1) + if self.use_fp16: + x_noisy = x_noisy.half() + control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info']) + control = [c * scale for c, scale in zip(control, self.control_scales)] + eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control) + + return eps + + def instantiate_embedding_manager(self, config, embedder): + model = instantiate_from_config(config, embedder=embedder) + return model + + @torch.no_grad() + def get_unconditional_conditioning(self, N): + return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None)) + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): + if self.embedding_manager is not None and c['text_info'] is not None: + self.embedding_manager.encode_text(c['text_info']) + if isinstance(c, dict): + cond_txt = c['c_crossattn'][0] + else: + cond_txt = c + if self.embedding_manager is not None: + cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager) + else: + cond_txt = self.cond_stage_model.encode(cond_txt) + if isinstance(c, dict): + c['c_crossattn'][0] = cond_txt + else: + c = cond_txt + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + def fill_caption(self, batch, place_holder='*'): + bs = len(batch['n_lines']) + cond_list = copy.deepcopy(batch[self.cond_stage_key]) + for i in range(bs): + n_lines = batch['n_lines'][i] + if n_lines == 0: + continue + cur_cap = cond_list[i] + for j in range(n_lines): + r_txt = batch['texts'][j][i] + cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1) + cond_list[i] = cur_cap + batch[self.cond_stage_key] = cond_list + + @torch.no_grad() + def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, + quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, + plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs): + use_ddim = ddim_steps is not None + + log = dict() + z, c = self.get_input(batch, self.first_stage_key, bs=N) + if self.cond_stage_trainable: + with torch.no_grad(): + c = self.get_learned_conditioning(c) + c_crossattn = c["c_crossattn"][0][:N] + c_cat = c["c_concat"][0][:N] + text_info = c["text_info"] + text_info['glyphs'] = [i[:N] for i in text_info['glyphs']] + text_info['gly_line'] = [i[:N] for i in text_info['gly_line']] + text_info['positions'] = [i[:N] for i in text_info['positions']] + text_info['n_lines'] = text_info['n_lines'][:N] + text_info['masked_x'] = text_info['masked_x'][:N] + text_info['img'] = text_info['img'][:N] + + N = min(z.shape[0], N) + n_row = min(z.shape[0], n_row) + log["reconstruction"] = self.decode_first_stage(z) + log["masked_image"] = self.decode_first_stage(text_info['masked_x']) + log["control"] = c_cat * 2.0 - 1.0 + log["img"] = text_info['img'].permute(0, 3, 1, 2) # log source image if needed + # get glyph + glyph_bs = torch.stack(text_info['glyphs']) + glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0 + log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,) + # fill caption + if not self.embedding_manager: + self.fill_caption(batch) + captions = batch[self.cond_stage_key] + log["conditioning"] = log_txt_as_img((512, 512), captions, size=16) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), '1 -> b', b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') + diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info}, + batch_size=N, ddim=use_ddim, + ddim_steps=ddim_steps, eta=ddim_eta) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if unconditional_guidance_scale > 1.0: + uc_cross = self.get_unconditional_conditioning(N) + uc_cat = c_cat # torch.zeros_like(c_cat) + uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info} + samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info}, + batch_size=N, ddim=use_ddim, + ddim_steps=ddim_steps, eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc_full, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg + pred_x0 = False # wether log pred_x0 + if pred_x0: + for idx in range(len(tmps['pred_x0'])): + pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx]) + log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0 + + return log + + @torch.no_grad() + def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): + ddim_sampler = DDIMSampler(self) + b, c, h, w = cond["c_concat"][0].shape + shape = (self.channels, h // 8, w // 8) + samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs) + return samples, intermediates + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.control_model.parameters()) + if self.embedding_manager: + params += list(self.embedding_manager.embedding_parameters()) + if not self.sd_locked: + # params += list(self.model.diffusion_model.input_blocks.parameters()) + # params += list(self.model.diffusion_model.middle_block.parameters()) + params += list(self.model.diffusion_model.output_blocks.parameters()) + params += list(self.model.diffusion_model.out.parameters()) + if self.unlockKV: + nCount = 0 + for name, param in self.model.diffusion_model.named_parameters(): + if 'attn2.to_k' in name or 'attn2.to_v' in name: + params += [param] + nCount += 1 + print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!') + + opt = torch.optim.AdamW(params, lr=lr) + return opt + + def low_vram_shift(self, is_diffusing): + if is_diffusing: + self.model = self.model.cuda() + self.control_model = self.control_model.cuda() + self.first_stage_model = self.first_stage_model.cpu() + self.cond_stage_model = self.cond_stage_model.cpu() + else: + self.model = self.model.cpu() + self.control_model = self.control_model.cpu() + self.first_stage_model = self.first_stage_model.cuda() + self.cond_stage_model = self.cond_stage_model.cuda() diff --git a/iopaint/model/anytext/cldm/ddim_hacked.py b/iopaint/model/anytext/cldm/ddim_hacked.py new file mode 100644 index 0000000..87ea63b --- /dev/null +++ b/iopaint/model/anytext/cldm/ddim_hacked.py @@ -0,0 +1,486 @@ +"""SAMPLING ONLY.""" + +import torch +import numpy as np +from tqdm import tqdm + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import ( + make_ddim_sampling_parameters, + make_ddim_timesteps, + noise_like, + extract_into_tensor, +) + + +class DDIMSampler(object): + def __init__(self, model, device, schedule="linear", **kwargs): + super().__init__() + self.device = device + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device(self.device): + attr = attr.to(torch.device(self.device)) + setattr(self, name, attr) + + def make_schedule( + self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True + ): + self.ddim_timesteps = make_ddim_timesteps( + ddim_discr_method=ddim_discretize, + num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps, + verbose=verbose, + ) + alphas_cumprod = self.model.alphas_cumprod + assert ( + alphas_cumprod.shape[0] == self.ddpm_num_timesteps + ), "alphas have to be defined for each timestep" + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device) + + self.register_buffer("betas", to_torch(self.model.betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer( + "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) + ) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer( + "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", + to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", + to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), + ) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( + alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta, + verbose=verbose, + ) + self.register_buffer("ddim_sigmas", ddim_sigmas) + self.register_buffer("ddim_alphas", ddim_alphas) + self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) + self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) + / (1 - self.alphas_cumprod) + * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) + ) + self.register_buffer( + "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps + ) + + @torch.no_grad() + def sample( + self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0.0, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + dynamic_threshold=None, + ucg_schedule=None, + **kwargs, + ): + if conditioning is not None: + if isinstance(conditioning, dict): + ctmp = conditioning[list(conditioning.keys())[0]] + while isinstance(ctmp, list): + ctmp = ctmp[0] + cbs = ctmp.shape[0] + if cbs != batch_size: + print( + f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" + ) + + elif isinstance(conditioning, list): + for ctmp in conditioning: + if ctmp.shape[0] != batch_size: + print( + f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" + ) + + else: + if conditioning.shape[0] != batch_size: + print( + f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" + ) + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + print(f"Data shape for DDIM sampling is {size}, eta {eta}") + + samples, intermediates = self.ddim_sampling( + conditioning, + size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, + x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ucg_schedule=ucg_schedule, + ) + return samples, intermediates + + @torch.no_grad() + def ddim_sampling( + self, + cond, + shape, + x_T=None, + ddim_use_original_steps=False, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + log_every_t=100, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + dynamic_threshold=None, + ucg_schedule=None, + ): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = ( + self.ddpm_num_timesteps + if ddim_use_original_steps + else self.ddim_timesteps + ) + elif timesteps is not None and not ddim_use_original_steps: + subset_end = ( + int( + min(timesteps / self.ddim_timesteps.shape[0], 1) + * self.ddim_timesteps.shape[0] + ) + - 1 + ) + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {"x_inter": [img], "pred_x0": [img]} + time_range = ( + reversed(range(0, timesteps)) + if ddim_use_original_steps + else np.flip(timesteps) + ) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps) + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + + if mask is not None: + assert x0 is not None + img_orig = self.model.q_sample( + x0, ts + ) # TODO: deterministic forward pass? + img = img_orig * mask + (1.0 - mask) * img + + if ucg_schedule is not None: + assert len(ucg_schedule) == len(time_range) + unconditional_guidance_scale = ucg_schedule[i] + + outs = self.p_sample_ddim( + img, + cond, + ts, + index=index, + use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, + temperature=temperature, + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ) + img, pred_x0 = outs + if callback: + callback(i) + if img_callback: + img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates["x_inter"].append(img) + intermediates["pred_x0"].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def p_sample_ddim( + self, + x, + c, + t, + index, + repeat_noise=False, + use_original_steps=False, + quantize_denoised=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + dynamic_threshold=None, + ): + b, *_, device = *x.shape, x.device + + if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: + model_output = self.model.apply_model(x, t, c) + else: + model_t = self.model.apply_model(x, t, c) + model_uncond = self.model.apply_model(x, t, unconditional_conditioning) + model_output = model_uncond + unconditional_guidance_scale * ( + model_t - model_uncond + ) + + if self.model.parameterization == "v": + e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) + else: + e_t = model_output + + if score_corrector is not None: + assert self.model.parameterization == "eps", "not implemented" + e_t = score_corrector.modify_score( + self.model, e_t, x, t, c, **corrector_kwargs + ) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = ( + self.model.alphas_cumprod_prev + if use_original_steps + else self.ddim_alphas_prev + ) + sqrt_one_minus_alphas = ( + self.model.sqrt_one_minus_alphas_cumprod + if use_original_steps + else self.ddim_sqrt_one_minus_alphas + ) + sigmas = ( + self.model.ddim_sigmas_for_original_num_steps + if use_original_steps + else self.ddim_sigmas + ) + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full( + (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device + ) + + # current prediction for x_0 + if self.model.parameterization != "v": + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + else: + pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) + + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + + if dynamic_threshold is not None: + raise NotImplementedError() + + # direction pointing to x_t + dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + return x_prev, pred_x0 + + @torch.no_grad() + def encode( + self, + x0, + c, + t_enc, + use_original_steps=False, + return_intermediates=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + callback=None, + ): + timesteps = ( + np.arange(self.ddpm_num_timesteps) + if use_original_steps + else self.ddim_timesteps + ) + num_reference_steps = timesteps.shape[0] + + assert t_enc <= num_reference_steps + num_steps = t_enc + + if use_original_steps: + alphas_next = self.alphas_cumprod[:num_steps] + alphas = self.alphas_cumprod_prev[:num_steps] + else: + alphas_next = self.ddim_alphas[:num_steps] + alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) + + x_next = x0 + intermediates = [] + inter_steps = [] + for i in tqdm(range(num_steps), desc="Encoding Image"): + t = torch.full( + (x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long + ) + if unconditional_guidance_scale == 1.0: + noise_pred = self.model.apply_model(x_next, t, c) + else: + assert unconditional_conditioning is not None + e_t_uncond, noise_pred = torch.chunk( + self.model.apply_model( + torch.cat((x_next, x_next)), + torch.cat((t, t)), + torch.cat((unconditional_conditioning, c)), + ), + 2, + ) + noise_pred = e_t_uncond + unconditional_guidance_scale * ( + noise_pred - e_t_uncond + ) + + xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next + weighted_noise_pred = ( + alphas_next[i].sqrt() + * ((1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) + * noise_pred + ) + x_next = xt_weighted + weighted_noise_pred + if ( + return_intermediates + and i % (num_steps // return_intermediates) == 0 + and i < num_steps - 1 + ): + intermediates.append(x_next) + inter_steps.append(i) + elif return_intermediates and i >= num_steps - 2: + intermediates.append(x_next) + inter_steps.append(i) + if callback: + callback(i) + + out = {"x_encoded": x_next, "intermediate_steps": inter_steps} + if return_intermediates: + out.update({"intermediates": intermediates}) + return x_next, out + + @torch.no_grad() + def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): + # fast, but does not allow for exact reconstruction + # t serves as an index to gather the correct alphas + if use_original_steps: + sqrt_alphas_cumprod = self.sqrt_alphas_cumprod + sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod + else: + sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) + sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas + + if noise is None: + noise = torch.randn_like(x0) + return ( + extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise + ) + + @torch.no_grad() + def decode( + self, + x_latent, + cond, + t_start, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + use_original_steps=False, + callback=None, + ): + timesteps = ( + np.arange(self.ddpm_num_timesteps) + if use_original_steps + else self.ddim_timesteps + ) + timesteps = timesteps[:t_start] + + time_range = np.flip(timesteps) + total_steps = timesteps.shape[0] + print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc="Decoding image", total=total_steps) + x_dec = x_latent + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full( + (x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long + ) + x_dec, _ = self.p_sample_ddim( + x_dec, + cond, + ts, + index=index, + use_original_steps=use_original_steps, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + ) + if callback: + callback(i) + return x_dec diff --git a/iopaint/model/anytext/cldm/embedding_manager.py b/iopaint/model/anytext/cldm/embedding_manager.py new file mode 100644 index 0000000..6ccf8a9 --- /dev/null +++ b/iopaint/model/anytext/cldm/embedding_manager.py @@ -0,0 +1,165 @@ +''' +Copyright (c) Alibaba, Inc. and its affiliates. +''' +import torch +import torch.nn as nn +import torch.nn.functional as F +from functools import partial +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import conv_nd, linear + + +def get_clip_token_for_string(tokenizer, string): + batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"] + assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string" + return tokens[0, 1] + + +def get_bert_token_for_string(tokenizer, string): + token = tokenizer(string) + assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string" + token = token[0, 1] + return token + + +def get_clip_vision_emb(encoder, processor, img): + _img = img.repeat(1, 3, 1, 1)*255 + inputs = processor(images=_img, return_tensors="pt") + inputs['pixel_values'] = inputs['pixel_values'].to(img.device) + outputs = encoder(**inputs) + emb = outputs.image_embeds + return emb + + +def get_recog_emb(encoder, img_list): + _img_list = [(img.repeat(1, 3, 1, 1)*255)[0] for img in img_list] + encoder.predictor.eval() + _, preds_neck = encoder.pred_imglist(_img_list, show_debug=False) + return preds_neck + + +def pad_H(x): + _, _, H, W = x.shape + p_top = (W - H) // 2 + p_bot = W - H - p_top + return F.pad(x, (0, 0, p_top, p_bot)) + + +class EncodeNet(nn.Module): + def __init__(self, in_channels, out_channels): + super(EncodeNet, self).__init__() + chan = 16 + n_layer = 4 # downsample + + self.conv1 = conv_nd(2, in_channels, chan, 3, padding=1) + self.conv_list = nn.ModuleList([]) + _c = chan + for i in range(n_layer): + self.conv_list.append(conv_nd(2, _c, _c*2, 3, padding=1, stride=2)) + _c *= 2 + self.conv2 = conv_nd(2, _c, out_channels, 3, padding=1) + self.avgpool = nn.AdaptiveAvgPool2d(1) + self.act = nn.SiLU() + + def forward(self, x): + x = self.act(self.conv1(x)) + for layer in self.conv_list: + x = self.act(layer(x)) + x = self.act(self.conv2(x)) + x = self.avgpool(x) + x = x.view(x.size(0), -1) + return x + + +class EmbeddingManager(nn.Module): + def __init__( + self, + embedder, + valid=True, + glyph_channels=20, + position_channels=1, + placeholder_string='*', + add_pos=False, + emb_type='ocr', + **kwargs + ): + super().__init__() + if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder + get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer) + token_dim = 768 + if hasattr(embedder, 'vit'): + assert emb_type == 'vit' + self.get_vision_emb = partial(get_clip_vision_emb, embedder.vit, embedder.processor) + self.get_recog_emb = None + else: # using LDM's BERT encoder + get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn) + token_dim = 1280 + self.token_dim = token_dim + self.emb_type = emb_type + + self.add_pos = add_pos + if add_pos: + self.position_encoder = EncodeNet(position_channels, token_dim) + if emb_type == 'ocr': + self.proj = linear(40*64, token_dim) + if emb_type == 'conv': + self.glyph_encoder = EncodeNet(glyph_channels, token_dim) + + self.placeholder_token = get_token_for_string(placeholder_string) + + def encode_text(self, text_info): + if self.get_recog_emb is None and self.emb_type == 'ocr': + self.get_recog_emb = partial(get_recog_emb, self.recog) + + gline_list = [] + pos_list = [] + for i in range(len(text_info['n_lines'])): # sample index in a batch + n_lines = text_info['n_lines'][i] + for j in range(n_lines): # line + gline_list += [text_info['gly_line'][j][i:i+1]] + if self.add_pos: + pos_list += [text_info['positions'][j][i:i+1]] + + if len(gline_list) > 0: + if self.emb_type == 'ocr': + recog_emb = self.get_recog_emb(gline_list) + enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1)) + elif self.emb_type == 'vit': + enc_glyph = self.get_vision_emb(pad_H(torch.cat(gline_list, dim=0))) + elif self.emb_type == 'conv': + enc_glyph = self.glyph_encoder(pad_H(torch.cat(gline_list, dim=0))) + if self.add_pos: + enc_pos = self.position_encoder(torch.cat(gline_list, dim=0)) + enc_glyph = enc_glyph+enc_pos + + self.text_embs_all = [] + n_idx = 0 + for i in range(len(text_info['n_lines'])): # sample index in a batch + n_lines = text_info['n_lines'][i] + text_embs = [] + for j in range(n_lines): # line + text_embs += [enc_glyph[n_idx:n_idx+1]] + n_idx += 1 + self.text_embs_all += [text_embs] + + def forward( + self, + tokenized_text, + embedded_text, + ): + b, device = tokenized_text.shape[0], tokenized_text.device + for i in range(b): + idx = tokenized_text[i] == self.placeholder_token.to(device) + if sum(idx) > 0: + if i >= len(self.text_embs_all): + print('truncation for log images...') + break + text_emb = torch.cat(self.text_embs_all[i], dim=0) + if sum(idx) != len(text_emb): + print('truncation for long caption...') + embedded_text[i][idx] = text_emb[:sum(idx)] + return embedded_text + + def embedding_parameters(self): + return self.parameters() diff --git a/iopaint/model/anytext/cldm/hack.py b/iopaint/model/anytext/cldm/hack.py new file mode 100644 index 0000000..05afe5f --- /dev/null +++ b/iopaint/model/anytext/cldm/hack.py @@ -0,0 +1,111 @@ +import torch +import einops + +import iopaint.model.anytext.ldm.modules.encoders.modules +import iopaint.model.anytext.ldm.modules.attention + +from transformers import logging +from iopaint.model.anytext.ldm.modules.attention import default + + +def disable_verbosity(): + logging.set_verbosity_error() + print('logging improved.') + return + + +def enable_sliced_attention(): + iopaint.model.anytext.ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward + print('Enabled sliced_attention.') + return + + +def hack_everything(clip_skip=0): + disable_verbosity() + iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward + iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip + print('Enabled clip hacks.') + return + + +# Written by Lvmin +def _hacked_clip_forward(self, text): + PAD = self.tokenizer.pad_token_id + EOS = self.tokenizer.eos_token_id + BOS = self.tokenizer.bos_token_id + + def tokenize(t): + return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"] + + def transformer_encode(t): + if self.clip_skip > 1: + rt = self.transformer(input_ids=t, output_hidden_states=True) + return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip]) + else: + return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state + + def split(x): + return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3] + + def pad(x, p, i): + return x[:i] if len(x) >= i else x + [p] * (i - len(x)) + + raw_tokens_list = tokenize(text) + tokens_list = [] + + for raw_tokens in raw_tokens_list: + raw_tokens_123 = split(raw_tokens) + raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123] + raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123] + tokens_list.append(raw_tokens_123) + + tokens_list = torch.IntTensor(tokens_list).to(self.device) + + feed = einops.rearrange(tokens_list, 'b f i -> (b f) i') + y = transformer_encode(feed) + z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3) + + return z + + +# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py +def _hacked_sliced_attentin_forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + del context, x + + q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + limit = k.shape[0] + att_step = 1 + q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0)) + k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0)) + v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0)) + + q_chunks.reverse() + k_chunks.reverse() + v_chunks.reverse() + sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) + del k, q, v + for i in range(0, limit, att_step): + q_buffer = q_chunks.pop() + k_buffer = k_chunks.pop() + v_buffer = v_chunks.pop() + sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale + + del k_buffer, q_buffer + # attention, what we cannot get enough of, by chunks + + sim_buffer = sim_buffer.softmax(dim=-1) + + sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer) + del v_buffer + sim[i:i + att_step, :, :] = sim_buffer + + del sim_buffer + sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h) + return self.to_out(sim) diff --git a/iopaint/model/anytext/cldm/model.py b/iopaint/model/anytext/cldm/model.py new file mode 100644 index 0000000..6d2d2c3 --- /dev/null +++ b/iopaint/model/anytext/cldm/model.py @@ -0,0 +1,40 @@ +import os +import torch + +from omegaconf import OmegaConf +from iopaint.model.anytext.ldm.util import instantiate_from_config + + +def get_state_dict(d): + return d.get("state_dict", d) + + +def load_state_dict(ckpt_path, location="cpu"): + _, extension = os.path.splitext(ckpt_path) + if extension.lower() == ".safetensors": + import safetensors.torch + + state_dict = safetensors.torch.load_file(ckpt_path, device=location) + else: + state_dict = get_state_dict( + torch.load(ckpt_path, map_location=torch.device(location)) + ) + state_dict = get_state_dict(state_dict) + print(f"Loaded state_dict from [{ckpt_path}]") + return state_dict + + +def create_model(config_path, device, cond_stage_path=None, use_fp16=False): + config = OmegaConf.load(config_path) + if cond_stage_path: + config.model.params.cond_stage_config.params.version = ( + cond_stage_path # use pre-downloaded ckpts, in case blocked + ) + config.model.params.cond_stage_config.params.device = device + if use_fp16: + config.model.params.use_fp16 = True + config.model.params.control_stage_config.params.use_fp16 = True + config.model.params.unet_config.params.use_fp16 = True + model = instantiate_from_config(config.model).cpu() + print(f"Loaded model config from [{config_path}]") + return model diff --git a/iopaint/model/anytext/cldm/recognizer.py b/iopaint/model/anytext/cldm/recognizer.py new file mode 100755 index 0000000..0621512 --- /dev/null +++ b/iopaint/model/anytext/cldm/recognizer.py @@ -0,0 +1,300 @@ +""" +Copyright (c) Alibaba, Inc. and its affiliates. +""" +import os +import cv2 +import numpy as np +import math +import traceback +from easydict import EasyDict as edict +import time +from iopaint.model.anytext.ocr_recog.RecModel import RecModel +import torch +import torch.nn.functional as F + + +def min_bounding_rect(img): + ret, thresh = cv2.threshold(img, 127, 255, 0) + contours, hierarchy = cv2.findContours( + thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE + ) + if len(contours) == 0: + print("Bad contours, using fake bbox...") + return np.array([[0, 0], [100, 0], [100, 100], [0, 100]]) + max_contour = max(contours, key=cv2.contourArea) + rect = cv2.minAreaRect(max_contour) + box = cv2.boxPoints(rect) + box = np.int0(box) + # sort + x_sorted = sorted(box, key=lambda x: x[0]) + left = x_sorted[:2] + right = x_sorted[2:] + left = sorted(left, key=lambda x: x[1]) + (tl, bl) = left + right = sorted(right, key=lambda x: x[1]) + (tr, br) = right + if tl[1] > bl[1]: + (tl, bl) = (bl, tl) + if tr[1] > br[1]: + (tr, br) = (br, tr) + return np.array([tl, tr, br, bl]) + + +def create_predictor(model_dir=None, model_lang="ch", is_onnx=False): + model_file_path = model_dir + if model_file_path is not None and not os.path.exists(model_file_path): + raise ValueError("not find model file path {}".format(model_file_path)) + + if is_onnx: + import onnxruntime as ort + + sess = ort.InferenceSession( + model_file_path, providers=["CPUExecutionProvider"] + ) # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' + return sess + else: + if model_lang == "ch": + n_class = 6625 + elif model_lang == "en": + n_class = 97 + else: + raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}") + rec_config = edict( + in_channels=3, + backbone=edict( + type="MobileNetV1Enhance", + scale=0.5, + last_conv_stride=[1, 2], + last_pool_type="avg", + ), + neck=edict( + type="SequenceEncoder", + encoder_type="svtr", + dims=64, + depth=2, + hidden_dims=120, + use_guide=True, + ), + head=edict( + type="CTCHead", + fc_decay=0.00001, + out_channels=n_class, + return_feats=True, + ), + ) + + rec_model = RecModel(rec_config) + if model_file_path is not None: + rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu")) + rec_model.eval() + return rec_model.eval() + + +def _check_image_file(path): + img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff"} + return any([path.lower().endswith(e) for e in img_end]) + + +def get_image_file_list(img_file): + imgs_lists = [] + if img_file is None or not os.path.exists(img_file): + raise Exception("not found any img file in {}".format(img_file)) + if os.path.isfile(img_file) and _check_image_file(img_file): + imgs_lists.append(img_file) + elif os.path.isdir(img_file): + for single_file in os.listdir(img_file): + file_path = os.path.join(img_file, single_file) + if os.path.isfile(file_path) and _check_image_file(file_path): + imgs_lists.append(file_path) + if len(imgs_lists) == 0: + raise Exception("not found any img file in {}".format(img_file)) + imgs_lists = sorted(imgs_lists) + return imgs_lists + + +class TextRecognizer(object): + def __init__(self, args, predictor): + self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] + self.rec_batch_num = args.rec_batch_num + self.predictor = predictor + self.chars = self.get_char_dict(args.rec_char_dict_path) + self.char2id = {x: i for i, x in enumerate(self.chars)} + self.is_onnx = not isinstance(self.predictor, torch.nn.Module) + self.use_fp16 = args.use_fp16 + + # img: CHW + def resize_norm_img(self, img, max_wh_ratio): + imgC, imgH, imgW = self.rec_image_shape + assert imgC == img.shape[0] + imgW = int((imgH * max_wh_ratio)) + + h, w = img.shape[1:] + ratio = w / float(h) + if math.ceil(imgH * ratio) > imgW: + resized_w = imgW + else: + resized_w = int(math.ceil(imgH * ratio)) + resized_image = torch.nn.functional.interpolate( + img.unsqueeze(0), + size=(imgH, resized_w), + mode="bilinear", + align_corners=True, + ) + resized_image /= 255.0 + resized_image -= 0.5 + resized_image /= 0.5 + padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device) + padding_im[:, :, 0:resized_w] = resized_image[0] + return padding_im + + # img_list: list of tensors with shape chw 0-255 + def pred_imglist(self, img_list, show_debug=False, is_ori=False): + img_num = len(img_list) + assert img_num > 0 + # Calculate the aspect ratio of all text bars + width_list = [] + for img in img_list: + width_list.append(img.shape[2] / float(img.shape[1])) + # Sorting can speed up the recognition process + indices = torch.from_numpy(np.argsort(np.array(width_list))) + batch_num = self.rec_batch_num + preds_all = [None] * img_num + preds_neck_all = [None] * img_num + for beg_img_no in range(0, img_num, batch_num): + end_img_no = min(img_num, beg_img_no + batch_num) + norm_img_batch = [] + + imgC, imgH, imgW = self.rec_image_shape[:3] + max_wh_ratio = imgW / imgH + for ino in range(beg_img_no, end_img_no): + h, w = img_list[indices[ino]].shape[1:] + if h > w * 1.2: + img = img_list[indices[ino]] + img = torch.transpose(img, 1, 2).flip(dims=[1]) + img_list[indices[ino]] = img + h, w = img.shape[1:] + # wh_ratio = w * 1.0 / h + # max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio + for ino in range(beg_img_no, end_img_no): + norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) + if self.use_fp16: + norm_img = norm_img.half() + norm_img = norm_img.unsqueeze(0) + norm_img_batch.append(norm_img) + norm_img_batch = torch.cat(norm_img_batch, dim=0) + if show_debug: + for i in range(len(norm_img_batch)): + _img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy() + _img = (_img + 0.5) * 255 + _img = _img[:, :, ::-1] + file_name = f"{indices[beg_img_no + i]}" + file_name = file_name + "_ori" if is_ori else file_name + cv2.imwrite(file_name + ".jpg", _img) + if self.is_onnx: + input_dict = {} + input_dict[self.predictor.get_inputs()[0].name] = ( + norm_img_batch.detach().cpu().numpy() + ) + outputs = self.predictor.run(None, input_dict) + preds = {} + preds["ctc"] = torch.from_numpy(outputs[0]) + preds["ctc_neck"] = [torch.zeros(1)] * img_num + else: + preds = self.predictor(norm_img_batch) + for rno in range(preds["ctc"].shape[0]): + preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno] + preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno] + + return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0) + + def get_char_dict(self, character_dict_path): + character_str = [] + with open(character_dict_path, "rb") as fin: + lines = fin.readlines() + for line in lines: + line = line.decode("utf-8").strip("\n").strip("\r\n") + character_str.append(line) + dict_character = list(character_str) + dict_character = ["sos"] + dict_character + [" "] # eos is space + return dict_character + + def get_text(self, order): + char_list = [self.chars[text_id] for text_id in order] + return "".join(char_list) + + def decode(self, mat): + text_index = mat.detach().cpu().numpy().argmax(axis=1) + ignored_tokens = [0] + selection = np.ones(len(text_index), dtype=bool) + selection[1:] = text_index[1:] != text_index[:-1] + for ignored_token in ignored_tokens: + selection &= text_index != ignored_token + return text_index[selection], np.where(selection)[0] + + def get_ctcloss(self, preds, gt_text, weight): + if not isinstance(weight, torch.Tensor): + weight = torch.tensor(weight).to(preds.device) + ctc_loss = torch.nn.CTCLoss(reduction="none") + log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC + targets = [] + target_lengths = [] + for t in gt_text: + targets += [self.char2id.get(i, len(self.chars) - 1) for i in t] + target_lengths += [len(t)] + targets = torch.tensor(targets).to(preds.device) + target_lengths = torch.tensor(target_lengths).to(preds.device) + input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to( + preds.device + ) + loss = ctc_loss(log_probs, targets, input_lengths, target_lengths) + loss = loss / input_lengths * weight + return loss + + +def main(): + rec_model_dir = "./ocr_weights/ppv3_rec.pth" + predictor = create_predictor(rec_model_dir) + args = edict() + args.rec_image_shape = "3, 48, 320" + args.rec_char_dict_path = "./ocr_weights/ppocr_keys_v1.txt" + args.rec_batch_num = 6 + text_recognizer = TextRecognizer(args, predictor) + image_dir = "./test_imgs_cn" + gt_text = ["韩国小馆"] * 14 + + image_file_list = get_image_file_list(image_dir) + valid_image_file_list = [] + img_list = [] + + for image_file in image_file_list: + img = cv2.imread(image_file) + if img is None: + print("error in loading image:{}".format(image_file)) + continue + valid_image_file_list.append(image_file) + img_list.append(torch.from_numpy(img).permute(2, 0, 1).float()) + try: + tic = time.time() + times = [] + for i in range(10): + preds, _ = text_recognizer.pred_imglist(img_list) # get text + preds_all = preds.softmax(dim=2) + times += [(time.time() - tic) * 1000.0] + tic = time.time() + print(times) + print(np.mean(times[1:]) / len(preds_all)) + weight = np.ones(len(gt_text)) + loss = text_recognizer.get_ctcloss(preds, gt_text, weight) + for i in range(len(valid_image_file_list)): + pred = preds_all[i] + order, idx = text_recognizer.decode(pred) + text = text_recognizer.get_text(order) + print( + f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}' + ) + except Exception as E: + print(traceback.format_exc(), E) + + +if __name__ == "__main__": + main() diff --git a/iopaint/model/anytext/ldm/models/autoencoder.py b/iopaint/model/anytext/ldm/models/autoencoder.py new file mode 100644 index 0000000..20d52e9 --- /dev/null +++ b/iopaint/model/anytext/ldm/models/autoencoder.py @@ -0,0 +1,218 @@ +import torch +import torch.nn.functional as F +from contextlib import contextmanager + +from iopaint.model.anytext.ldm.modules.diffusionmodules.model import Encoder, Decoder +from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution + +from iopaint.model.anytext.ldm.util import instantiate_from_config +from iopaint.model.anytext.ldm.modules.ema import LitEma + + +class AutoencoderKL(torch.nn.Module): + def __init__(self, + ddconfig, + lossconfig, + embed_dim, + ckpt_path=None, + ignore_keys=[], + image_key="image", + colorize_nlabels=None, + monitor=None, + ema_decay=None, + learn_logvar=False + ): + super().__init__() + self.learn_logvar = learn_logvar + self.image_key = image_key + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + self.loss = instantiate_from_config(lossconfig) + assert ddconfig["double_z"] + self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + self.embed_dim = embed_dim + if colorize_nlabels is not None: + assert type(colorize_nlabels)==int + self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) + if monitor is not None: + self.monitor = monitor + + self.use_ema = ema_decay is not None + if self.use_ema: + self.ema_decay = ema_decay + assert 0. < ema_decay < 1. + self.model_ema = LitEma(self, decay=ema_decay) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + + def init_from_ckpt(self, path, ignore_keys=list()): + sd = torch.load(path, map_location="cpu")["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + self.load_state_dict(sd, strict=False) + print(f"Restored from {path}") + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.parameters()) + self.model_ema.copy_to(self) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self) + + def encode(self, x): + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return posterior + + def decode(self, z): + z = self.post_quant_conv(z) + dec = self.decoder(z) + return dec + + def forward(self, input, sample_posterior=True): + posterior = self.encode(input) + if sample_posterior: + z = posterior.sample() + else: + z = posterior.mode() + dec = self.decode(z) + return dec, posterior + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() + return x + + def training_step(self, batch, batch_idx, optimizer_idx): + inputs = self.get_input(batch, self.image_key) + reconstructions, posterior = self(inputs) + + if optimizer_idx == 0: + # train encoder+decoder+logvar + aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, + last_layer=self.get_last_layer(), split="train") + self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) + self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) + return aeloss + + if optimizer_idx == 1: + # train the discriminator + discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, + last_layer=self.get_last_layer(), split="train") + + self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) + self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) + return discloss + + def validation_step(self, batch, batch_idx): + log_dict = self._validation_step(batch, batch_idx) + with self.ema_scope(): + log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") + return log_dict + + def _validation_step(self, batch, batch_idx, postfix=""): + inputs = self.get_input(batch, self.image_key) + reconstructions, posterior = self(inputs) + aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, + last_layer=self.get_last_layer(), split="val"+postfix) + + discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, + last_layer=self.get_last_layer(), split="val"+postfix) + + self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"]) + self.log_dict(log_dict_ae) + self.log_dict(log_dict_disc) + return self.log_dict + + def configure_optimizers(self): + lr = self.learning_rate + ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list( + self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()) + if self.learn_logvar: + print(f"{self.__class__.__name__}: Learning logvar") + ae_params_list.append(self.loss.logvar) + opt_ae = torch.optim.Adam(ae_params_list, + lr=lr, betas=(0.5, 0.9)) + opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), + lr=lr, betas=(0.5, 0.9)) + return [opt_ae, opt_disc], [] + + def get_last_layer(self): + return self.decoder.conv_out.weight + + @torch.no_grad() + def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs): + log = dict() + x = self.get_input(batch, self.image_key) + x = x.to(self.device) + if not only_inputs: + xrec, posterior = self(x) + if x.shape[1] > 3: + # colorize with random projection + assert xrec.shape[1] > 3 + x = self.to_rgb(x) + xrec = self.to_rgb(xrec) + log["samples"] = self.decode(torch.randn_like(posterior.sample())) + log["reconstructions"] = xrec + if log_ema or self.use_ema: + with self.ema_scope(): + xrec_ema, posterior_ema = self(x) + if x.shape[1] > 3: + # colorize with random projection + assert xrec_ema.shape[1] > 3 + xrec_ema = self.to_rgb(xrec_ema) + log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample())) + log["reconstructions_ema"] = xrec_ema + log["inputs"] = x + return log + + def to_rgb(self, x): + assert self.image_key == "segmentation" + if not hasattr(self, "colorize"): + self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) + x = F.conv2d(x, weight=self.colorize) + x = 2.*(x-x.min())/(x.max()-x.min()) - 1. + return x + + +class IdentityFirstStage(torch.nn.Module): + def __init__(self, *args, vq_interface=False, **kwargs): + self.vq_interface = vq_interface + super().__init__() + + def encode(self, x, *args, **kwargs): + return x + + def decode(self, x, *args, **kwargs): + return x + + def quantize(self, x, *args, **kwargs): + if self.vq_interface: + return x, None, [None, None, None] + return x + + def forward(self, x, *args, **kwargs): + return x + diff --git a/iopaint/model/anytext/ldm/models/diffusion/__init__.py b/iopaint/model/anytext/ldm/models/diffusion/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/iopaint/model/anytext/ldm/models/diffusion/ddim.py b/iopaint/model/anytext/ldm/models/diffusion/ddim.py new file mode 100644 index 0000000..f8bbaff --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/ddim.py @@ -0,0 +1,354 @@ +"""SAMPLING ONLY.""" + +import torch +import numpy as np +from tqdm import tqdm + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor + + +class DDIMSampler(object): + def __init__(self, model, schedule="linear", **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): + self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) + alphas_cumprod = self.model.alphas_cumprod + assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer('betas', to_torch(self.model.betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta,verbose=verbose) + self.register_buffer('ddim_sigmas', ddim_sigmas) + self.register_buffer('ddim_alphas', ddim_alphas) + self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) + self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( + 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) + self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) + + @torch.no_grad() + def sample(self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0., + mask=None, + x0=None, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1., + unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + dynamic_threshold=None, + ucg_schedule=None, + **kwargs + ): + if conditioning is not None: + if isinstance(conditioning, dict): + ctmp = conditioning[list(conditioning.keys())[0]] + while isinstance(ctmp, list): ctmp = ctmp[0] + cbs = ctmp.shape[0] + # cbs = len(ctmp[0]) + if cbs != batch_size: + print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + + elif isinstance(conditioning, list): + for ctmp in conditioning: + if ctmp.shape[0] != batch_size: + print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + + else: + if conditioning.shape[0] != batch_size: + print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + print(f'Data shape for DDIM sampling is {size}, eta {eta}') + + samples, intermediates = self.ddim_sampling(conditioning, size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ucg_schedule=ucg_schedule + ) + return samples, intermediates + + @torch.no_grad() + def ddim_sampling(self, cond, shape, + x_T=None, ddim_use_original_steps=False, + callback=None, timesteps=None, quantize_denoised=False, + mask=None, x0=None, img_callback=None, log_every_t=100, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, + ucg_schedule=None): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps + elif timesteps is not None and not ddim_use_original_steps: + subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {'x_inter': [img], 'pred_x0': [img], "index": [10000]} + time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + + if mask is not None: + assert x0 is not None + img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? + img = img_orig * mask + (1. - mask) * img + + if ucg_schedule is not None: + assert len(ucg_schedule) == len(time_range) + unconditional_guidance_scale = ucg_schedule[i] + + outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, temperature=temperature, + noise_dropout=noise_dropout, score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold) + img, pred_x0 = outs + if callback: + callback(i) + if img_callback: + img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates['x_inter'].append(img) + intermediates['pred_x0'].append(pred_x0) + intermediates['index'].append(index) + + return img, intermediates + + @torch.no_grad() + def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_conditioning=None, + dynamic_threshold=None): + b, *_, device = *x.shape, x.device + + if unconditional_conditioning is None or unconditional_guidance_scale == 1.: + model_output = self.model.apply_model(x, t, c) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t] * 2) + if isinstance(c, dict): + assert isinstance(unconditional_conditioning, dict) + c_in = dict() + for k in c: + if isinstance(c[k], list): + c_in[k] = [torch.cat([ + unconditional_conditioning[k][i], + c[k][i]]) for i in range(len(c[k]))] + elif isinstance(c[k], dict): + c_in[k] = dict() + for key in c[k]: + if isinstance(c[k][key], list): + if not isinstance(c[k][key][0], torch.Tensor): + continue + c_in[k][key] = [torch.cat([ + unconditional_conditioning[k][key][i], + c[k][key][i]]) for i in range(len(c[k][key]))] + else: + c_in[k][key] = torch.cat([ + unconditional_conditioning[k][key], + c[k][key]]) + + else: + c_in[k] = torch.cat([ + unconditional_conditioning[k], + c[k]]) + elif isinstance(c, list): + c_in = list() + assert isinstance(unconditional_conditioning, list) + for i in range(len(c)): + c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) + else: + c_in = torch.cat([unconditional_conditioning, c]) + model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) + model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) + + if self.model.parameterization == "v": + e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) + else: + e_t = model_output + + if score_corrector is not None: + assert self.model.parameterization == "eps", 'not implemented' + e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev + sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas + sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) + + # current prediction for x_0 + if self.model.parameterization != "v": + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + else: + pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) + + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + + if dynamic_threshold is not None: + raise NotImplementedError() + + # direction pointing to x_t + dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + return x_prev, pred_x0 + + @torch.no_grad() + def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, + unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): + num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] + + assert t_enc <= num_reference_steps + num_steps = t_enc + + if use_original_steps: + alphas_next = self.alphas_cumprod[:num_steps] + alphas = self.alphas_cumprod_prev[:num_steps] + else: + alphas_next = self.ddim_alphas[:num_steps] + alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) + + x_next = x0 + intermediates = [] + inter_steps = [] + for i in tqdm(range(num_steps), desc='Encoding Image'): + t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) + if unconditional_guidance_scale == 1.: + noise_pred = self.model.apply_model(x_next, t, c) + else: + assert unconditional_conditioning is not None + e_t_uncond, noise_pred = torch.chunk( + self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), + torch.cat((unconditional_conditioning, c))), 2) + noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) + + xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next + weighted_noise_pred = alphas_next[i].sqrt() * ( + (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred + x_next = xt_weighted + weighted_noise_pred + if return_intermediates and i % ( + num_steps // return_intermediates) == 0 and i < num_steps - 1: + intermediates.append(x_next) + inter_steps.append(i) + elif return_intermediates and i >= num_steps - 2: + intermediates.append(x_next) + inter_steps.append(i) + if callback: callback(i) + + out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} + if return_intermediates: + out.update({'intermediates': intermediates}) + return x_next, out + + @torch.no_grad() + def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): + # fast, but does not allow for exact reconstruction + # t serves as an index to gather the correct alphas + if use_original_steps: + sqrt_alphas_cumprod = self.sqrt_alphas_cumprod + sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod + else: + sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) + sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas + + if noise is None: + noise = torch.randn_like(x0) + return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) + + @torch.no_grad() + def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, + use_original_steps=False, callback=None): + + timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps + timesteps = timesteps[:t_start] + + time_range = np.flip(timesteps) + total_steps = timesteps.shape[0] + print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc='Decoding image', total=total_steps) + x_dec = x_latent + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) + x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning) + if callback: callback(i) + return x_dec \ No newline at end of file diff --git a/iopaint/model/anytext/ldm/models/diffusion/ddpm.py b/iopaint/model/anytext/ldm/models/diffusion/ddpm.py new file mode 100644 index 0000000..9f48918 --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/ddpm.py @@ -0,0 +1,2380 @@ +""" +Part of the implementation is borrowed and modified from ControlNet, publicly available at https://github.com/lllyasviel/ControlNet/blob/main/ldm/models/diffusion/ddpm.py +""" + +import torch +import torch.nn as nn +import numpy as np +from torch.optim.lr_scheduler import LambdaLR +from einops import rearrange, repeat +from contextlib import contextmanager, nullcontext +from functools import partial +import itertools +from tqdm import tqdm +from torchvision.utils import make_grid +from omegaconf import ListConfig + +from iopaint.model.anytext.ldm.util import ( + log_txt_as_img, + exists, + default, + ismap, + isimage, + mean_flat, + count_params, + instantiate_from_config, +) +from iopaint.model.anytext.ldm.modules.ema import LitEma +from iopaint.model.anytext.ldm.modules.distributions.distributions import ( + normal_kl, + DiagonalGaussianDistribution, +) +from iopaint.model.anytext.ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import ( + make_beta_schedule, + extract_into_tensor, + noise_like, +) +from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler +import cv2 + + +__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} + +PRINT_DEBUG = False + + +def print_grad(grad): + # print('Gradient:', grad) + # print(grad.shape) + a = grad.max() + b = grad.min() + # print(f'mean={grad.mean():.4f}, max={a:.4f}, min={b:.4f}') + s = 255.0 / (a - b) + c = 255 * (-b / (a - b)) + grad = grad * s + c + # print(f'mean={grad.mean():.4f}, max={grad.max():.4f}, min={grad.min():.4f}') + img = grad[0].permute(1, 2, 0).detach().cpu().numpy() + if img.shape[0] == 512: + cv2.imwrite("grad-img.jpg", img) + elif img.shape[0] == 64: + cv2.imwrite("grad-latent.jpg", img) + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +def uniform_on_device(r1, r2, shape, device): + return (r1 - r2) * torch.rand(*shape, device=device) + r2 + + +class DDPM(torch.nn.Module): + # classic DDPM with Gaussian diffusion, in image space + def __init__( + self, + unet_config, + timesteps=1000, + beta_schedule="linear", + loss_type="l2", + ckpt_path=None, + ignore_keys=[], + load_only_unet=False, + monitor="val/loss", + use_ema=True, + first_stage_key="image", + image_size=256, + channels=3, + log_every_t=100, + clip_denoised=True, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + given_betas=None, + original_elbo_weight=0.0, + v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta + l_simple_weight=1.0, + conditioning_key=None, + parameterization="eps", # all assuming fixed variance schedules + scheduler_config=None, + use_positional_encodings=False, + learn_logvar=False, + logvar_init=0.0, + make_it_fit=False, + ucg_training=None, + reset_ema=False, + reset_num_ema_updates=False, + ): + super().__init__() + assert parameterization in [ + "eps", + "x0", + "v", + ], 'currently only supporting "eps" and "x0" and "v"' + self.parameterization = parameterization + print( + f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode" + ) + self.cond_stage_model = None + self.clip_denoised = clip_denoised + self.log_every_t = log_every_t + self.first_stage_key = first_stage_key + self.image_size = image_size # try conv? + self.channels = channels + self.use_positional_encodings = use_positional_encodings + self.model = DiffusionWrapper(unet_config, conditioning_key) + count_params(self.model, verbose=True) + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self.model) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + self.use_scheduler = scheduler_config is not None + if self.use_scheduler: + self.scheduler_config = scheduler_config + + self.v_posterior = v_posterior + self.original_elbo_weight = original_elbo_weight + self.l_simple_weight = l_simple_weight + + if monitor is not None: + self.monitor = monitor + self.make_it_fit = make_it_fit + if reset_ema: + assert exists(ckpt_path) + if ckpt_path is not None: + self.init_from_ckpt( + ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet + ) + if reset_ema: + assert self.use_ema + print( + f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint." + ) + self.model_ema = LitEma(self.model) + if reset_num_ema_updates: + print( + " +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ " + ) + assert self.use_ema + self.model_ema.reset_num_updates() + + self.register_schedule( + given_betas=given_betas, + beta_schedule=beta_schedule, + timesteps=timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + + self.loss_type = loss_type + + self.learn_logvar = learn_logvar + logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) + if self.learn_logvar: + self.logvar = nn.Parameter(self.logvar, requires_grad=True) + else: + self.register_buffer("logvar", logvar) + + self.ucg_training = ucg_training or dict() + if self.ucg_training: + self.ucg_prng = np.random.RandomState() + + def register_schedule( + self, + given_betas=None, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + if exists(given_betas): + betas = given_betas + else: + betas = make_beta_schedule( + beta_schedule, + timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + alphas = 1.0 - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + # np.save('1.npy', alphas_cumprod) + alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) + + (timesteps,) = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert ( + alphas_cumprod.shape[0] == self.num_timesteps + ), "alphas have to be defined for each timestep" + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer("betas", to_torch(betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) + ) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + posterior_variance = (1 - self.v_posterior) * betas * ( + 1.0 - alphas_cumprod_prev + ) / (1.0 - alphas_cumprod) + self.v_posterior * betas + # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) + self.register_buffer("posterior_variance", to_torch(posterior_variance)) + # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain + self.register_buffer( + "posterior_log_variance_clipped", + to_torch(np.log(np.maximum(posterior_variance, 1e-20))), + ) + self.register_buffer( + "posterior_mean_coef1", + to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), + ) + self.register_buffer( + "posterior_mean_coef2", + to_torch( + (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) + ), + ) + + if self.parameterization == "eps": + lvlb_weights = self.betas**2 / ( + 2 + * self.posterior_variance + * to_torch(alphas) + * (1 - self.alphas_cumprod) + ) + elif self.parameterization == "x0": + lvlb_weights = ( + 0.5 + * np.sqrt(torch.Tensor(alphas_cumprod)) + / (2.0 * 1 - torch.Tensor(alphas_cumprod)) + ) + elif self.parameterization == "v": + lvlb_weights = torch.ones_like( + self.betas**2 + / ( + 2 + * self.posterior_variance + * to_torch(alphas) + * (1 - self.alphas_cumprod) + ) + ) + else: + raise NotImplementedError("mu not supported") + lvlb_weights[0] = lvlb_weights[1] + self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) + assert not torch.isnan(self.lvlb_weights).all() + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.model.parameters()) + self.model_ema.copy_to(self.model) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.model.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + @torch.no_grad() + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + if self.make_it_fit: + n_params = len( + [ + name + for name, _ in itertools.chain( + self.named_parameters(), self.named_buffers() + ) + ] + ) + for name, param in tqdm( + itertools.chain(self.named_parameters(), self.named_buffers()), + desc="Fitting old weights to new weights", + total=n_params, + ): + if not name in sd: + continue + old_shape = sd[name].shape + new_shape = param.shape + assert len(old_shape) == len(new_shape) + if len(new_shape) > 2: + # we only modify first two axes + assert new_shape[2:] == old_shape[2:] + # assumes first axis corresponds to output dim + if not new_shape == old_shape: + new_param = param.clone() + old_param = sd[name] + if len(new_shape) == 1: + for i in range(new_param.shape[0]): + new_param[i] = old_param[i % old_shape[0]] + elif len(new_shape) >= 2: + for i in range(new_param.shape[0]): + for j in range(new_param.shape[1]): + new_param[i, j] = old_param[ + i % old_shape[0], j % old_shape[1] + ] + + n_used_old = torch.ones(old_shape[1]) + for j in range(new_param.shape[1]): + n_used_old[j % old_shape[1]] += 1 + n_used_new = torch.zeros(new_shape[1]) + for j in range(new_param.shape[1]): + n_used_new[j] = n_used_old[j % old_shape[1]] + + n_used_new = n_used_new[None, :] + while len(n_used_new.shape) < len(new_shape): + n_used_new = n_used_new.unsqueeze(-1) + new_param /= n_used_new + + sd[name] = new_param + + missing, unexpected = ( + self.load_state_dict(sd, strict=False) + if not only_model + else self.model.load_state_dict(sd, strict=False) + ) + print( + f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" + ) + if len(missing) > 0: + print(f"Missing Keys:\n {missing}") + if len(unexpected) > 0: + print(f"\nUnexpected Keys:\n {unexpected}") + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = extract_into_tensor( + self.log_one_minus_alphas_cumprod, t, x_start.shape + ) + return mean, variance, log_variance + + def predict_start_from_noise(self, x_t, t, noise): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + * noise + ) + + def predict_start_from_z_and_v(self, x_t, t, v): + # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v + ) + + def predict_eps_from_z_and_v(self, x_t, t, v): + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) + * x_t + ) + + def q_posterior(self, x_start, x_t, t): + posterior_mean = ( + extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = extract_into_tensor( + self.posterior_log_variance_clipped, t, x_t.shape + ) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, x, t, clip_denoised: bool): + model_out = self.model(x, t) + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + if clip_denoised: + x_recon.clamp_(-1.0, 1.0) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior( + x_start=x_recon, x_t=x, t=t + ) + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): + b, *_, device = *x.shape, x.device + model_mean, _, model_log_variance = self.p_mean_variance( + x=x, t=t, clip_denoised=clip_denoised + ) + noise = noise_like(x.shape, device, repeat_noise) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, shape, return_intermediates=False): + device = self.betas.device + b = shape[0] + img = torch.randn(shape, device=device) + intermediates = [img] + for i in tqdm( + reversed(range(0, self.num_timesteps)), + desc="Sampling t", + total=self.num_timesteps, + ): + img = self.p_sample( + img, + torch.full((b,), i, device=device, dtype=torch.long), + clip_denoised=self.clip_denoised, + ) + if i % self.log_every_t == 0 or i == self.num_timesteps - 1: + intermediates.append(img) + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, batch_size=16, return_intermediates=False): + image_size = self.image_size + channels = self.channels + return self.p_sample_loop( + (batch_size, channels, image_size, image_size), + return_intermediates=return_intermediates, + ) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) + * noise + ) + + def get_v(self, x, noise, t): + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x + ) + + def get_loss(self, pred, target, mean=True): + if self.loss_type == "l1": + loss = (target - pred).abs() + if mean: + loss = loss.mean() + elif self.loss_type == "l2": + if mean: + loss = torch.nn.functional.mse_loss(target, pred) + else: + loss = torch.nn.functional.mse_loss(target, pred, reduction="none") + else: + raise NotImplementedError("unknown loss type '{loss_type}'") + + return loss + + def p_losses(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_out = self.model(x_noisy, t) + + loss_dict = {} + if self.parameterization == "eps": + target = noise + elif self.parameterization == "x0": + target = x_start + elif self.parameterization == "v": + target = self.get_v(x_start, noise, t) + else: + raise NotImplementedError( + f"Parameterization {self.parameterization} not yet supported" + ) + + loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) + + log_prefix = "train" if self.training else "val" + + loss_dict.update({f"{log_prefix}/loss_simple": loss.mean()}) + loss_simple = loss.mean() * self.l_simple_weight + + loss_vlb = (self.lvlb_weights[t] * loss).mean() + loss_dict.update({f"{log_prefix}/loss_vlb": loss_vlb}) + + loss = loss_simple + self.original_elbo_weight * loss_vlb + + loss_dict.update({f"{log_prefix}/loss": loss}) + + return loss, loss_dict + + def forward(self, x, *args, **kwargs): + # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size + # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' + t = torch.randint( + 0, self.num_timesteps, (x.shape[0],), device=self.device + ).long() + return self.p_losses(x, t, *args, **kwargs) + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = rearrange(x, "b h w c -> b c h w") + x = x.to(memory_format=torch.contiguous_format).float() + return x + + def shared_step(self, batch): + x = self.get_input(batch, self.first_stage_key) + loss, loss_dict = self(x) + return loss, loss_dict + + def training_step(self, batch, batch_idx): + for k in self.ucg_training: + p = self.ucg_training[k]["p"] + val = self.ucg_training[k]["val"] + if val is None: + val = "" + for i in range(len(batch[k])): + if self.ucg_prng.choice(2, p=[1 - p, p]): + batch[k][i] = val + + loss, loss_dict = self.shared_step(batch) + + self.log_dict( + loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True + ) + + self.log( + "global_step", + self.global_step, + prog_bar=True, + logger=True, + on_step=True, + on_epoch=False, + ) + + if self.use_scheduler: + lr = self.optimizers().param_groups[0]["lr"] + self.log( + "lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False + ) + + return loss + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + _, loss_dict_no_ema = self.shared_step(batch) + with self.ema_scope(): + _, loss_dict_ema = self.shared_step(batch) + loss_dict_ema = {key + "_ema": loss_dict_ema[key] for key in loss_dict_ema} + self.log_dict( + loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True + ) + self.log_dict( + loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True + ) + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self.model) + + def _get_rows_from_list(self, samples): + n_imgs_per_row = len(samples) + denoise_grid = rearrange(samples, "n b c h w -> b n c h w") + denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): + log = dict() + x = self.get_input(batch, self.first_stage_key) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + x = x.to(self.device)[:N] + log["inputs"] = x + + # get diffusion row + diffusion_row = list() + x_start = x[:n_row] + + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(x_start) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + diffusion_row.append(x_noisy) + + log["diffusion_row"] = self._get_rows_from_list(diffusion_row) + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, denoise_row = self.sample( + batch_size=N, return_intermediates=True + ) + + log["samples"] = samples + log["denoise_row"] = self._get_rows_from_list(denoise_row) + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.learn_logvar: + params = params + [self.logvar] + opt = torch.optim.AdamW(params, lr=lr) + return opt + + +class LatentDiffusion(DDPM): + """main class""" + + def __init__( + self, + first_stage_config, + cond_stage_config, + num_timesteps_cond=None, + cond_stage_key="image", + cond_stage_trainable=False, + concat_mode=True, + cond_stage_forward=None, + conditioning_key=None, + scale_factor=1.0, + scale_by_std=False, + force_null_conditioning=False, + *args, + **kwargs, + ): + self.force_null_conditioning = force_null_conditioning + self.num_timesteps_cond = default(num_timesteps_cond, 1) + self.scale_by_std = scale_by_std + assert self.num_timesteps_cond <= kwargs["timesteps"] + # for backwards compatibility after implementation of DiffusionWrapper + if conditioning_key is None: + conditioning_key = "concat" if concat_mode else "crossattn" + if ( + cond_stage_config == "__is_unconditional__" + and not self.force_null_conditioning + ): + conditioning_key = None + ckpt_path = kwargs.pop("ckpt_path", None) + reset_ema = kwargs.pop("reset_ema", False) + reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) + ignore_keys = kwargs.pop("ignore_keys", []) + super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + self.concat_mode = concat_mode + self.cond_stage_trainable = cond_stage_trainable + self.cond_stage_key = cond_stage_key + try: + self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 + except: + self.num_downs = 0 + if not scale_by_std: + self.scale_factor = scale_factor + else: + self.register_buffer("scale_factor", torch.tensor(scale_factor)) + self.instantiate_first_stage(first_stage_config) + self.instantiate_cond_stage(cond_stage_config) + self.cond_stage_forward = cond_stage_forward + self.clip_denoised = False + self.bbox_tokenizer = None + + self.restarted_from_ckpt = False + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys) + self.restarted_from_ckpt = True + if reset_ema: + assert self.use_ema + print( + f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint." + ) + self.model_ema = LitEma(self.model) + if reset_num_ema_updates: + print( + " +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ " + ) + assert self.use_ema + self.model_ema.reset_num_updates() + + def make_cond_schedule( + self, + ): + self.cond_ids = torch.full( + size=(self.num_timesteps,), + fill_value=self.num_timesteps - 1, + dtype=torch.long, + ) + ids = torch.round( + torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) + ).long() + self.cond_ids[: self.num_timesteps_cond] = ids + + @torch.no_grad() + def on_train_batch_start(self, batch, batch_idx, dataloader_idx): + # only for very first batch + if ( + self.scale_by_std + and self.current_epoch == 0 + and self.global_step == 0 + and batch_idx == 0 + and not self.restarted_from_ckpt + ): + assert ( + self.scale_factor == 1.0 + ), "rather not use custom rescaling and std-rescaling simultaneously" + # set rescale weight to 1./std of encodings + print("### USING STD-RESCALING ###") + x = super().get_input(batch, self.first_stage_key) + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + del self.scale_factor + self.register_buffer("scale_factor", 1.0 / z.flatten().std()) + print(f"setting self.scale_factor to {self.scale_factor}") + print("### USING STD-RESCALING ###") + + def register_schedule( + self, + given_betas=None, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + super().register_schedule( + given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s + ) + + self.shorten_cond_schedule = self.num_timesteps_cond > 1 + if self.shorten_cond_schedule: + self.make_cond_schedule() + + def instantiate_first_stage(self, config): + model = instantiate_from_config(config) + self.first_stage_model = model.eval() + self.first_stage_model.train = disabled_train + for param in self.first_stage_model.parameters(): + param.requires_grad = False + + def instantiate_cond_stage(self, config): + if not self.cond_stage_trainable: + if config == "__is_first_stage__": + print("Using first stage also as cond stage.") + self.cond_stage_model = self.first_stage_model + elif config == "__is_unconditional__": + print(f"Training {self.__class__.__name__} as an unconditional model.") + self.cond_stage_model = None + # self.be_unconditional = True + else: + model = instantiate_from_config(config) + self.cond_stage_model = model.eval() + self.cond_stage_model.train = disabled_train + for param in self.cond_stage_model.parameters(): + param.requires_grad = False + else: + assert config != "__is_first_stage__" + assert config != "__is_unconditional__" + model = instantiate_from_config(config) + self.cond_stage_model = model + + def _get_denoise_row_from_list( + self, samples, desc="", force_no_decoder_quantization=False + ): + denoise_row = [] + for zd in tqdm(samples, desc=desc): + denoise_row.append( + self.decode_first_stage( + zd.to(self.device), force_not_quantize=force_no_decoder_quantization + ) + ) + n_imgs_per_row = len(denoise_row) + denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W + denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w") + denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + def get_first_stage_encoding(self, encoder_posterior): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample() + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError( + f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" + ) + return self.scale_factor * z + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, "encode") and callable( + self.cond_stage_model.encode + ): + c = self.cond_stage_model.encode(c) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + def meshgrid(self, h, w): + y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) + x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) + + arr = torch.cat([y, x], dim=-1) + return arr + + def delta_border(self, h, w): + """ + :param h: height + :param w: width + :return: normalized distance to image border, + wtith min distance = 0 at border and max dist = 0.5 at image center + """ + lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) + arr = self.meshgrid(h, w) / lower_right_corner + dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] + dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] + edge_dist = torch.min( + torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1 + )[0] + return edge_dist + + def get_weighting(self, h, w, Ly, Lx, device): + weighting = self.delta_border(h, w) + weighting = torch.clip( + weighting, + self.split_input_params["clip_min_weight"], + self.split_input_params["clip_max_weight"], + ) + weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) + + if self.split_input_params["tie_braker"]: + L_weighting = self.delta_border(Ly, Lx) + L_weighting = torch.clip( + L_weighting, + self.split_input_params["clip_min_tie_weight"], + self.split_input_params["clip_max_tie_weight"], + ) + + L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) + weighting = weighting * L_weighting + return weighting + + def get_fold_unfold( + self, x, kernel_size, stride, uf=1, df=1 + ): # todo load once not every time, shorten code + """ + :param x: img of size (bs, c, h, w) + :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) + """ + bs, nc, h, w = x.shape + + # number of crops in image + Ly = (h - kernel_size[0]) // stride[0] + 1 + Lx = (w - kernel_size[1]) // stride[1] + 1 + + if uf == 1 and df == 1: + fold_params = dict( + kernel_size=kernel_size, dilation=1, padding=0, stride=stride + ) + unfold = torch.nn.Unfold(**fold_params) + + fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) + + weighting = self.get_weighting( + kernel_size[0], kernel_size[1], Ly, Lx, x.device + ).to(x.dtype) + normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) + + elif uf > 1 and df == 1: + fold_params = dict( + kernel_size=kernel_size, dilation=1, padding=0, stride=stride + ) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict( + kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), + dilation=1, + padding=0, + stride=(stride[0] * uf, stride[1] * uf), + ) + fold = torch.nn.Fold( + output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2 + ) + + weighting = self.get_weighting( + kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device + ).to(x.dtype) + normalization = fold(weighting).view( + 1, 1, h * uf, w * uf + ) # normalizes the overlap + weighting = weighting.view( + (1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx) + ) + + elif df > 1 and uf == 1: + fold_params = dict( + kernel_size=kernel_size, dilation=1, padding=0, stride=stride + ) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict( + kernel_size=(kernel_size[0] // df, kernel_size[0] // df), + dilation=1, + padding=0, + stride=(stride[0] // df, stride[1] // df), + ) + fold = torch.nn.Fold( + output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2 + ) + + weighting = self.get_weighting( + kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device + ).to(x.dtype) + normalization = fold(weighting).view( + 1, 1, h // df, w // df + ) # normalizes the overlap + weighting = weighting.view( + (1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx) + ) + + else: + raise NotImplementedError + + return fold, unfold, normalization, weighting + + @torch.no_grad() + def get_input( + self, + batch, + k, + return_first_stage_outputs=False, + force_c_encode=False, + cond_key=None, + return_original_cond=False, + bs=None, + return_x=False, + mask_k=None, + ): + x = super().get_input(batch, k) + if bs is not None: + x = x[:bs] + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + + if mask_k is not None: + mx = super().get_input(batch, mask_k) + if bs is not None: + mx = mx[:bs] + mx = mx.to(self.device) + encoder_posterior = self.encode_first_stage(mx) + mx = self.get_first_stage_encoding(encoder_posterior).detach() + + if self.model.conditioning_key is not None and not self.force_null_conditioning: + if cond_key is None: + cond_key = self.cond_stage_key + if cond_key != self.first_stage_key: + if cond_key in ["caption", "coordinates_bbox", "txt"]: + xc = batch[cond_key] + elif cond_key in ["class_label", "cls"]: + xc = batch + else: + xc = super().get_input(batch, cond_key).to(self.device) + else: + xc = x + if not self.cond_stage_trainable or force_c_encode: + if isinstance(xc, dict) or isinstance(xc, list): + c = self.get_learned_conditioning(xc) + else: + c = self.get_learned_conditioning(xc.to(self.device)) + else: + c = xc + if bs is not None: + c = c[:bs] + + if self.use_positional_encodings: + pos_x, pos_y = self.compute_latent_shifts(batch) + ckey = __conditioning_keys__[self.model.conditioning_key] + c = {ckey: c, "pos_x": pos_x, "pos_y": pos_y} + + else: + c = None + xc = None + if self.use_positional_encodings: + pos_x, pos_y = self.compute_latent_shifts(batch) + c = {"pos_x": pos_x, "pos_y": pos_y} + out = [z, c] + if return_first_stage_outputs: + xrec = self.decode_first_stage(z) + out.extend([x, xrec]) + if return_x: + out.extend([x]) + if return_original_cond: + out.append(xc) + if mask_k: + out.append(mx) + return out + + @torch.no_grad() + def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, "b h w c -> b c h w").contiguous() + + z = 1.0 / self.scale_factor * z + return self.first_stage_model.decode(z) + + def decode_first_stage_grad(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, "b h w c -> b c h w").contiguous() + + z = 1.0 / self.scale_factor * z + return self.first_stage_model.decode(z) + + @torch.no_grad() + def encode_first_stage(self, x): + return self.first_stage_model.encode(x) + + def shared_step(self, batch, **kwargs): + x, c = self.get_input(batch, self.first_stage_key) + loss = self(x, c) + return loss + + def forward(self, x, c, *args, **kwargs): + t = torch.randint( + 0, self.num_timesteps, (x.shape[0],), device=self.device + ).long() + # t = torch.randint(500, 501, (x.shape[0],), device=self.device).long() + if self.model.conditioning_key is not None: + assert c is not None + if self.cond_stage_trainable: + c = self.get_learned_conditioning(c) + if self.shorten_cond_schedule: # TODO: drop this option + tc = self.cond_ids[t].to(self.device) + c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) + return self.p_losses(x, c, t, *args, **kwargs) + + def apply_model(self, x_noisy, t, cond, return_ids=False): + if isinstance(cond, dict): + # hybrid case, cond is expected to be a dict + pass + else: + if not isinstance(cond, list): + cond = [cond] + key = ( + "c_concat" if self.model.conditioning_key == "concat" else "c_crossattn" + ) + cond = {key: cond} + + x_recon = self.model(x_noisy, t, **cond) + + if isinstance(x_recon, tuple) and not return_ids: + return x_recon[0] + else: + return x_recon + + def _predict_eps_from_xstart(self, x_t, t, pred_xstart): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - pred_xstart + ) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + + def _prior_bpd(self, x_start): + """ + Get the prior KL term for the variational lower-bound, measured in + bits-per-dim. + This term can't be optimized, as it only depends on the encoder. + :param x_start: the [N x C x ...] tensor of inputs. + :return: a batch of [N] KL values (in bits), one per batch element. + """ + batch_size = x_start.shape[0] + t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) + qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) + kl_prior = normal_kl( + mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 + ) + return mean_flat(kl_prior) / np.log(2.0) + + def p_mean_variance( + self, + x, + c, + t, + clip_denoised: bool, + return_codebook_ids=False, + quantize_denoised=False, + return_x0=False, + score_corrector=None, + corrector_kwargs=None, + ): + t_in = t + model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) + + if score_corrector is not None: + assert self.parameterization == "eps" + model_out = score_corrector.modify_score( + self, model_out, x, t, c, **corrector_kwargs + ) + + if return_codebook_ids: + model_out, logits = model_out + + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + else: + raise NotImplementedError() + + if clip_denoised: + x_recon.clamp_(-1.0, 1.0) + if quantize_denoised: + x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) + model_mean, posterior_variance, posterior_log_variance = self.q_posterior( + x_start=x_recon, x_t=x, t=t + ) + if return_codebook_ids: + return model_mean, posterior_variance, posterior_log_variance, logits + elif return_x0: + return model_mean, posterior_variance, posterior_log_variance, x_recon + else: + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample( + self, + x, + c, + t, + clip_denoised=False, + repeat_noise=False, + return_codebook_ids=False, + quantize_denoised=False, + return_x0=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + ): + b, *_, device = *x.shape, x.device + outputs = self.p_mean_variance( + x=x, + c=c, + t=t, + clip_denoised=clip_denoised, + return_codebook_ids=return_codebook_ids, + quantize_denoised=quantize_denoised, + return_x0=return_x0, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + ) + if return_codebook_ids: + raise DeprecationWarning("Support dropped.") + model_mean, _, model_log_variance, logits = outputs + elif return_x0: + model_mean, _, model_log_variance, x0 = outputs + else: + model_mean, _, model_log_variance = outputs + + noise = noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + + if return_codebook_ids: + return model_mean + nonzero_mask * ( + 0.5 * model_log_variance + ).exp() * noise, logits.argmax(dim=1) + if return_x0: + return ( + model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, + x0, + ) + else: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def progressive_denoising( + self, + cond, + shape, + verbose=True, + callback=None, + quantize_denoised=False, + img_callback=None, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + batch_size=None, + x_T=None, + start_T=None, + log_every_t=None, + ): + if not log_every_t: + log_every_t = self.log_every_t + timesteps = self.num_timesteps + if batch_size is not None: + b = batch_size if batch_size is not None else shape[0] + shape = [batch_size] + list(shape) + else: + b = batch_size = shape[0] + if x_T is None: + img = torch.randn(shape, device=self.device) + else: + img = x_T + intermediates = [] + if cond is not None: + if isinstance(cond, dict): + cond = { + key: cond[key][:batch_size] + if not isinstance(cond[key], list) + else list(map(lambda x: x[:batch_size], cond[key])) + for key in cond + } + else: + cond = ( + [c[:batch_size] for c in cond] + if isinstance(cond, list) + else cond[:batch_size] + ) + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = ( + tqdm( + reversed(range(0, timesteps)), + desc="Progressive Generation", + total=timesteps, + ) + if verbose + else reversed(range(0, timesteps)) + ) + if type(temperature) == float: + temperature = [temperature] * timesteps + + for i in iterator: + ts = torch.full((b,), i, device=self.device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != "hybrid" + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img, x0_partial = self.p_sample( + img, + cond, + ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, + return_x0=True, + temperature=temperature[i], + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + ) + if mask is not None: + assert x0 is not None + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1.0 - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(x0_partial) + if callback: + callback(i) + if img_callback: + img_callback(img, i) + return img, intermediates + + @torch.no_grad() + def p_sample_loop( + self, + cond, + shape, + return_intermediates=False, + x_T=None, + verbose=True, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + start_T=None, + log_every_t=None, + ): + if not log_every_t: + log_every_t = self.log_every_t + device = self.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + intermediates = [img] + if timesteps is None: + timesteps = self.num_timesteps + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = ( + tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) + if verbose + else reversed(range(0, timesteps)) + ) + + if mask is not None: + assert x0 is not None + assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match + + for i in iterator: + ts = torch.full((b,), i, device=device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != "hybrid" + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img = self.p_sample( + img, + cond, + ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, + ) + if mask is not None: + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1.0 - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(img) + if callback: + callback(i) + if img_callback: + img_callback(img, i) + + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample( + self, + cond, + batch_size=16, + return_intermediates=False, + x_T=None, + verbose=True, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + shape=None, + **kwargs, + ): + if shape is None: + shape = (batch_size, self.channels, self.image_size, self.image_size) + if cond is not None: + if isinstance(cond, dict): + cond = { + key: cond[key][:batch_size] + if not isinstance(cond[key], list) + else list(map(lambda x: x[:batch_size], cond[key])) + for key in cond + } + else: + cond = ( + [c[:batch_size] for c in cond] + if isinstance(cond, list) + else cond[:batch_size] + ) + return self.p_sample_loop( + cond, + shape, + return_intermediates=return_intermediates, + x_T=x_T, + verbose=verbose, + timesteps=timesteps, + quantize_denoised=quantize_denoised, + mask=mask, + x0=x0, + ) + + @torch.no_grad() + def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): + if ddim: + ddim_sampler = DDIMSampler(self) + shape = (self.channels, self.image_size, self.image_size) + samples, intermediates = ddim_sampler.sample( + ddim_steps, batch_size, shape, cond, verbose=False, **kwargs + ) + + else: + samples, intermediates = self.sample( + cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs + ) + + return samples, intermediates + + @torch.no_grad() + def get_unconditional_conditioning(self, batch_size, null_label=None): + if null_label is not None: + xc = null_label + if isinstance(xc, ListConfig): + xc = list(xc) + if isinstance(xc, dict) or isinstance(xc, list): + c = self.get_learned_conditioning(xc) + else: + if hasattr(xc, "to"): + xc = xc.to(self.device) + c = self.get_learned_conditioning(xc) + else: + if self.cond_stage_key in ["class_label", "cls"]: + xc = self.cond_stage_model.get_unconditional_conditioning( + batch_size, device=self.device + ) + return self.get_learned_conditioning(xc) + else: + raise NotImplementedError("todo") + if isinstance(c, list): # in case the encoder gives us a list + for i in range(len(c)): + c[i] = repeat(c[i], "1 ... -> b ...", b=batch_size).to(self.device) + else: + c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device) + return c + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=50, + ddim_eta=0.0, + return_keys=None, + quantize_denoised=True, + inpaint=True, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc = self.get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=N, + ) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key in ["class_label", "cls"]: + try: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + except KeyError: + # probably no "human_label" in batch + pass + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w") + diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w") + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if ( + quantize_denoised + and not isinstance(self.first_stage_model, AutoencoderKL) + and not isinstance(self.first_stage_model, IdentityFirstStage) + ): + # also display when quantizing x0 while sampling + with ema_scope("Plotting Quantized Denoised"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + quantize_denoised=True, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, + # quantize_denoised=True) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_x0_quantized"] = x_samples + + if unconditional_guidance_scale > 1.0: + uc = self.get_unconditional_conditioning(N, unconditional_guidance_label) + if self.model.conditioning_key == "crossattn-adm": + uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]} + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + + if inpaint: + # make a simple center square + b, h, w = z.shape[0], z.shape[2], z.shape[3] + mask = torch.ones(N, h, w).to(self.device) + # zeros will be filled in + mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0 + mask = mask[:, None, ...] + with ema_scope("Plotting Inpaint"): + samples, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + eta=ddim_eta, + ddim_steps=ddim_steps, + x0=z[:N], + mask=mask, + ) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_inpainting"] = x_samples + log["mask"] = mask + + # outpaint + mask = 1.0 - mask + with ema_scope("Plotting Outpaint"): + samples, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + eta=ddim_eta, + ddim_steps=ddim_steps, + x0=z[:N], + mask=mask, + ) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_outpainting"] = x_samples + + if plot_progressive_rows: + with ema_scope("Plotting Progressives"): + img, progressives = self.progressive_denoising( + c, + shape=(self.channels, self.image_size, self.image_size), + batch_size=N, + ) + prog_row = self._get_denoise_row_from_list( + progressives, desc="Progressive Generation" + ) + log["progressive_row"] = prog_row + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.cond_stage_trainable: + print(f"{self.__class__.__name__}: Also optimizing conditioner params!") + params = params + list(self.cond_stage_model.parameters()) + if self.learn_logvar: + print("Diffusion model optimizing logvar") + params.append(self.logvar) + opt = torch.optim.AdamW(params, lr=lr) + if self.use_scheduler: + assert "target" in self.scheduler_config + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule), + "interval": "step", + "frequency": 1, + } + ] + return [opt], scheduler + return opt + + @torch.no_grad() + def to_rgb(self, x): + x = x.float() + if not hasattr(self, "colorize"): + self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) + x = nn.functional.conv2d(x, weight=self.colorize) + x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 + return x + + +class DiffusionWrapper(torch.nn.Module): + def __init__(self, diff_model_config, conditioning_key): + super().__init__() + self.sequential_cross_attn = diff_model_config.pop( + "sequential_crossattn", False + ) + self.diffusion_model = instantiate_from_config(diff_model_config) + self.conditioning_key = conditioning_key + assert self.conditioning_key in [ + None, + "concat", + "crossattn", + "hybrid", + "adm", + "hybrid-adm", + "crossattn-adm", + ] + + def forward( + self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None + ): + if self.conditioning_key is None: + out = self.diffusion_model(x, t) + elif self.conditioning_key == "concat": + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t) + elif self.conditioning_key == "crossattn": + if not self.sequential_cross_attn: + cc = torch.cat(c_crossattn, 1) + else: + cc = c_crossattn + out = self.diffusion_model(x, t, context=cc) + elif self.conditioning_key == "hybrid": + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc) + elif self.conditioning_key == "hybrid-adm": + assert c_adm is not None + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc, y=c_adm) + elif self.conditioning_key == "crossattn-adm": + assert c_adm is not None + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(x, t, context=cc, y=c_adm) + elif self.conditioning_key == "adm": + cc = c_crossattn[0] + out = self.diffusion_model(x, t, y=cc) + else: + raise NotImplementedError() + + return out + + +class LatentUpscaleDiffusion(LatentDiffusion): + def __init__( + self, + *args, + low_scale_config, + low_scale_key="LR", + noise_level_key=None, + **kwargs, + ): + super().__init__(*args, **kwargs) + # assumes that neither the cond_stage nor the low_scale_model contain trainable params + assert not self.cond_stage_trainable + self.instantiate_low_stage(low_scale_config) + self.low_scale_key = low_scale_key + self.noise_level_key = noise_level_key + + def instantiate_low_stage(self, config): + model = instantiate_from_config(config) + self.low_scale_model = model.eval() + self.low_scale_model.train = disabled_train + for param in self.low_scale_model.parameters(): + param.requires_grad = False + + @torch.no_grad() + def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): + if not log_mode: + z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) + else: + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + x_low = batch[self.low_scale_key][:bs] + x_low = rearrange(x_low, "b h w c -> b c h w") + x_low = x_low.to(memory_format=torch.contiguous_format).float() + zx, noise_level = self.low_scale_model(x_low) + if self.noise_level_key is not None: + # get noise level from batch instead, e.g. when extracting a custom noise level for bsr + raise NotImplementedError("TODO") + + all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level} + if log_mode: + # TODO: maybe disable if too expensive + x_low_rec = self.low_scale_model.decode(zx) + return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level + return z, all_conds + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input( + batch, self.first_stage_key, bs=N, log_mode=True + ) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + log["x_lr"] = x_low + log[ + f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}" + ] = x_low_rec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key in ["class_label", "cls"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w") + diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w") + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if unconditional_guidance_scale > 1.0: + uc_tmp = self.get_unconditional_conditioning( + N, unconditional_guidance_label + ) + # TODO explore better "unconditional" choices for the other keys + # maybe guide away from empty text label and highest noise level and maximally degraded zx? + uc = dict() + for k in c: + if k == "c_crossattn": + assert isinstance(c[k], list) and len(c[k]) == 1 + uc[k] = [uc_tmp] + elif k == "c_adm": # todo: only run with text-based guidance? + assert isinstance(c[k], torch.Tensor) + # uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level + uc[k] = c[k] + elif isinstance(c[k], list): + uc[k] = [c[k][i] for i in range(len(c[k]))] + else: + uc[k] = c[k] + + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + + if plot_progressive_rows: + with ema_scope("Plotting Progressives"): + img, progressives = self.progressive_denoising( + c, + shape=(self.channels, self.image_size, self.image_size), + batch_size=N, + ) + prog_row = self._get_denoise_row_from_list( + progressives, desc="Progressive Generation" + ) + log["progressive_row"] = prog_row + + return log + + +class LatentFinetuneDiffusion(LatentDiffusion): + """ + Basis for different finetunas, such as inpainting or depth2image + To disable finetuning mode, set finetune_keys to None + """ + + def __init__( + self, + concat_keys: tuple, + finetune_keys=( + "model.diffusion_model.input_blocks.0.0.weight", + "model_ema.diffusion_modelinput_blocks00weight", + ), + keep_finetune_dims=4, + # if model was trained without concat mode before and we would like to keep these channels + c_concat_log_start=None, # to log reconstruction of c_concat codes + c_concat_log_end=None, + *args, + **kwargs, + ): + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", list()) + super().__init__(*args, **kwargs) + self.finetune_keys = finetune_keys + self.concat_keys = concat_keys + self.keep_dims = keep_finetune_dims + self.c_concat_log_start = c_concat_log_start + self.c_concat_log_end = c_concat_log_end + if exists(self.finetune_keys): + assert exists(ckpt_path), "can only finetune from a given checkpoint" + if exists(ckpt_path): + self.init_from_ckpt(ckpt_path, ignore_keys) + + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + + # make it explicit, finetune by including extra input channels + if exists(self.finetune_keys) and k in self.finetune_keys: + new_entry = None + for name, param in self.named_parameters(): + if name in self.finetune_keys: + print( + f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only" + ) + new_entry = torch.zeros_like(param) # zero init + assert exists(new_entry), "did not find matching parameter to modify" + new_entry[:, : self.keep_dims, ...] = sd[k] + sd[k] = new_entry + + missing, unexpected = ( + self.load_state_dict(sd, strict=False) + if not only_model + else self.model.load_state_dict(sd, strict=False) + ) + print( + f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" + ) + if len(missing) > 0: + print(f"Missing Keys: {missing}") + if len(unexpected) > 0: + print(f"Unexpected Keys: {unexpected}") + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + quantize_denoised=True, + inpaint=True, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc = self.get_input( + batch, self.first_stage_key, bs=N, return_first_stage_outputs=True + ) + c_cat, c = c["c_concat"][0], c["c_crossattn"][0] + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key in ["class_label", "cls"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if not (self.c_concat_log_start is None and self.c_concat_log_end is None): + log["c_concat_decoded"] = self.decode_first_stage( + c_cat[:, self.c_concat_log_start : self.c_concat_log_end] + ) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w") + diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w") + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond={"c_concat": [c_cat], "c_crossattn": [c]}, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if unconditional_guidance_scale > 1.0: + uc_cross = self.get_unconditional_conditioning( + N, unconditional_guidance_label + ) + uc_cat = c_cat + uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond={"c_concat": [c_cat], "c_crossattn": [c]}, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc_full, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + + return log + + +class LatentInpaintDiffusion(LatentFinetuneDiffusion): + """ + can either run as pure inpainting model (only concat mode) or with mixed conditionings, + e.g. mask as concat and text via cross-attn. + To disable finetuning mode, set finetune_keys to None + """ + + def __init__( + self, + concat_keys=("mask", "masked_image"), + masked_image_key="masked_image", + *args, + **kwargs, + ): + super().__init__(concat_keys, *args, **kwargs) + self.masked_image_key = masked_image_key + assert self.masked_image_key in concat_keys + + @torch.no_grad() + def get_input( + self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False + ): + # note: restricted to non-trainable encoders currently + assert ( + not self.cond_stage_trainable + ), "trainable cond stages not yet supported for inpainting" + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + + assert exists(self.concat_keys) + c_cat = list() + for ck in self.concat_keys: + cc = ( + rearrange(batch[ck], "b h w c -> b c h w") + .to(memory_format=torch.contiguous_format) + .float() + ) + if bs is not None: + cc = cc[:bs] + cc = cc.to(self.device) + bchw = z.shape + if ck != self.masked_image_key: + cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) + else: + cc = self.get_first_stage_encoding(self.encode_first_stage(cc)) + c_cat.append(cc) + c_cat = torch.cat(c_cat, dim=1) + all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} + if return_first_stage_outputs: + return z, all_conds, x, xrec, xc + return z, all_conds + + @torch.no_grad() + def log_images(self, *args, **kwargs): + log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs) + log["masked_image"] = ( + rearrange(args[0]["masked_image"], "b h w c -> b c h w") + .to(memory_format=torch.contiguous_format) + .float() + ) + return log + + +class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion): + """ + condition on monocular depth estimation + """ + + def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs): + super().__init__(concat_keys=concat_keys, *args, **kwargs) + self.depth_model = instantiate_from_config(depth_stage_config) + self.depth_stage_key = concat_keys[0] + + @torch.no_grad() + def get_input( + self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False + ): + # note: restricted to non-trainable encoders currently + assert ( + not self.cond_stage_trainable + ), "trainable cond stages not yet supported for depth2img" + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + + assert exists(self.concat_keys) + assert len(self.concat_keys) == 1 + c_cat = list() + for ck in self.concat_keys: + cc = batch[ck] + if bs is not None: + cc = cc[:bs] + cc = cc.to(self.device) + cc = self.depth_model(cc) + cc = torch.nn.functional.interpolate( + cc, + size=z.shape[2:], + mode="bicubic", + align_corners=False, + ) + + depth_min, depth_max = torch.amin( + cc, dim=[1, 2, 3], keepdim=True + ), torch.amax(cc, dim=[1, 2, 3], keepdim=True) + cc = 2.0 * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.0 + c_cat.append(cc) + c_cat = torch.cat(c_cat, dim=1) + all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} + if return_first_stage_outputs: + return z, all_conds, x, xrec, xc + return z, all_conds + + @torch.no_grad() + def log_images(self, *args, **kwargs): + log = super().log_images(*args, **kwargs) + depth = self.depth_model(args[0][self.depth_stage_key]) + depth_min, depth_max = torch.amin( + depth, dim=[1, 2, 3], keepdim=True + ), torch.amax(depth, dim=[1, 2, 3], keepdim=True) + log["depth"] = 2.0 * (depth - depth_min) / (depth_max - depth_min) - 1.0 + return log + + +class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion): + """ + condition on low-res image (and optionally on some spatial noise augmentation) + """ + + def __init__( + self, + concat_keys=("lr",), + reshuffle_patch_size=None, + low_scale_config=None, + low_scale_key=None, + *args, + **kwargs, + ): + super().__init__(concat_keys=concat_keys, *args, **kwargs) + self.reshuffle_patch_size = reshuffle_patch_size + self.low_scale_model = None + if low_scale_config is not None: + print("Initializing a low-scale model") + assert exists(low_scale_key) + self.instantiate_low_stage(low_scale_config) + self.low_scale_key = low_scale_key + + def instantiate_low_stage(self, config): + model = instantiate_from_config(config) + self.low_scale_model = model.eval() + self.low_scale_model.train = disabled_train + for param in self.low_scale_model.parameters(): + param.requires_grad = False + + @torch.no_grad() + def get_input( + self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False + ): + # note: restricted to non-trainable encoders currently + assert ( + not self.cond_stage_trainable + ), "trainable cond stages not yet supported for upscaling-ft" + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + + assert exists(self.concat_keys) + assert len(self.concat_keys) == 1 + # optionally make spatial noise_level here + c_cat = list() + noise_level = None + for ck in self.concat_keys: + cc = batch[ck] + cc = rearrange(cc, "b h w c -> b c h w") + if exists(self.reshuffle_patch_size): + assert isinstance(self.reshuffle_patch_size, int) + cc = rearrange( + cc, + "b c (p1 h) (p2 w) -> b (p1 p2 c) h w", + p1=self.reshuffle_patch_size, + p2=self.reshuffle_patch_size, + ) + if bs is not None: + cc = cc[:bs] + cc = cc.to(self.device) + if exists(self.low_scale_model) and ck == self.low_scale_key: + cc, noise_level = self.low_scale_model(cc) + c_cat.append(cc) + c_cat = torch.cat(c_cat, dim=1) + if exists(noise_level): + all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level} + else: + all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} + if return_first_stage_outputs: + return z, all_conds, x, xrec, xc + return z, all_conds + + @torch.no_grad() + def log_images(self, *args, **kwargs): + log = super().log_images(*args, **kwargs) + log["lr"] = rearrange(args[0]["lr"], "b h w c -> b c h w") + return log diff --git a/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py new file mode 100644 index 0000000..7427f38 --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/__init__.py @@ -0,0 +1 @@ +from .sampler import DPMSolverSampler \ No newline at end of file diff --git a/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py new file mode 100644 index 0000000..095e5ba --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py @@ -0,0 +1,1154 @@ +import torch +import torch.nn.functional as F +import math +from tqdm import tqdm + + +class NoiseScheduleVP: + def __init__( + self, + schedule='discrete', + betas=None, + alphas_cumprod=None, + continuous_beta_0=0.1, + continuous_beta_1=20., + ): + """Create a wrapper class for the forward SDE (VP type). + *** + Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. + We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. + *** + The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). + We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). + Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: + log_alpha_t = self.marginal_log_mean_coeff(t) + sigma_t = self.marginal_std(t) + lambda_t = self.marginal_lambda(t) + Moreover, as lambda(t) is an invertible function, we also support its inverse function: + t = self.inverse_lambda(lambda_t) + =============================================================== + We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). + 1. For discrete-time DPMs: + For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: + t_i = (i + 1) / N + e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. + We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. + Args: + betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) + alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) + Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. + **Important**: Please pay special attention for the args for `alphas_cumprod`: + The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that + q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). + Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have + alpha_{t_n} = \sqrt{\hat{alpha_n}}, + and + log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). + 2. For continuous-time DPMs: + We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise + schedule are the default settings in DDPM and improved-DDPM: + Args: + beta_min: A `float` number. The smallest beta for the linear schedule. + beta_max: A `float` number. The largest beta for the linear schedule. + cosine_s: A `float` number. The hyperparameter in the cosine schedule. + cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. + T: A `float` number. The ending time of the forward process. + =============================================================== + Args: + schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, + 'linear' or 'cosine' for continuous-time DPMs. + Returns: + A wrapper object of the forward SDE (VP type). + + =============================================================== + Example: + # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', betas=betas) + # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) + # For continuous-time DPMs (VPSDE), linear schedule: + >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) + """ + + if schedule not in ['discrete', 'linear', 'cosine']: + raise ValueError( + "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( + schedule)) + + self.schedule = schedule + if schedule == 'discrete': + if betas is not None: + log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) + else: + assert alphas_cumprod is not None + log_alphas = 0.5 * torch.log(alphas_cumprod) + self.total_N = len(log_alphas) + self.T = 1. + self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) + self.log_alpha_array = log_alphas.reshape((1, -1,)) + else: + self.total_N = 1000 + self.beta_0 = continuous_beta_0 + self.beta_1 = continuous_beta_1 + self.cosine_s = 0.008 + self.cosine_beta_max = 999. + self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * ( + 1. + self.cosine_s) / math.pi - self.cosine_s + self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) + self.schedule = schedule + if schedule == 'cosine': + # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. + # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. + self.T = 0.9946 + else: + self.T = 1. + + def marginal_log_mean_coeff(self, t): + """ + Compute log(alpha_t) of a given continuous-time label t in [0, T]. + """ + if self.schedule == 'discrete': + return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), + self.log_alpha_array.to(t.device)).reshape((-1)) + elif self.schedule == 'linear': + return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 + elif self.schedule == 'cosine': + log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) + log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 + return log_alpha_t + + def marginal_alpha(self, t): + """ + Compute alpha_t of a given continuous-time label t in [0, T]. + """ + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + """ + Compute sigma_t of a given continuous-time label t in [0, T]. + """ + return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) + return log_mean_coeff - log_std + + def inverse_lambda(self, lamb): + """ + Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. + """ + if self.schedule == 'linear': + tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) + Delta = self.beta_0 ** 2 + tmp + return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) + elif self.schedule == 'discrete': + log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) + t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), + torch.flip(self.t_array.to(lamb.device), [1])) + return t.reshape((-1,)) + else: + log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) + t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * ( + 1. + self.cosine_s) / math.pi - self.cosine_s + t = t_fn(log_alpha) + return t + + +def model_wrapper( + model, + noise_schedule, + model_type="noise", + model_kwargs={}, + guidance_type="uncond", + condition=None, + unconditional_condition=None, + guidance_scale=1., + classifier_fn=None, + classifier_kwargs={}, +): + """Create a wrapper function for the noise prediction model. + DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to + firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. + We support four types of the diffusion model by setting `model_type`: + 1. "noise": noise prediction model. (Trained by predicting noise). + 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). + 3. "v": velocity prediction model. (Trained by predicting the velocity). + The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. + [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." + arXiv preprint arXiv:2202.00512 (2022). + [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." + arXiv preprint arXiv:2210.02303 (2022). + + 4. "score": marginal score function. (Trained by denoising score matching). + Note that the score function and the noise prediction model follows a simple relationship: + ``` + noise(x_t, t) = -sigma_t * score(x_t, t) + ``` + We support three types of guided sampling by DPMs by setting `guidance_type`: + 1. "uncond": unconditional sampling by DPMs. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + The input `classifier_fn` has the following format: + `` + classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) + `` + [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," + in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. + 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. + The input `model` has the following format: + `` + model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score + `` + And if cond == `unconditional_condition`, the model output is the unconditional DPM output. + [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." + arXiv preprint arXiv:2207.12598 (2022). + + The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) + or continuous-time labels (i.e. epsilon to T). + We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: + `` + def model_fn(x, t_continuous) -> noise: + t_input = get_model_input_time(t_continuous) + return noise_pred(model, x, t_input, **model_kwargs) + `` + where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. + =============================================================== + Args: + model: A diffusion model with the corresponding format described above. + noise_schedule: A noise schedule object, such as NoiseScheduleVP. + model_type: A `str`. The parameterization type of the diffusion model. + "noise" or "x_start" or "v" or "score". + model_kwargs: A `dict`. A dict for the other inputs of the model function. + guidance_type: A `str`. The type of the guidance for sampling. + "uncond" or "classifier" or "classifier-free". + condition: A pytorch tensor. The condition for the guided sampling. + Only used for "classifier" or "classifier-free" guidance type. + unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. + Only used for "classifier-free" guidance type. + guidance_scale: A `float`. The scale for the guided sampling. + classifier_fn: A classifier function. Only used for the classifier guidance. + classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. + Returns: + A noise prediction model that accepts the noised data and the continuous time as the inputs. + """ + + def get_model_input_time(t_continuous): + """ + Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. + For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. + For continuous-time DPMs, we just use `t_continuous`. + """ + if noise_schedule.schedule == 'discrete': + return (t_continuous - 1. / noise_schedule.total_N) * 1000. + else: + return t_continuous + + def noise_pred_fn(x, t_continuous, cond=None): + if t_continuous.reshape((-1,)).shape[0] == 1: + t_continuous = t_continuous.expand((x.shape[0])) + t_input = get_model_input_time(t_continuous) + if cond is None: + output = model(x, t_input, **model_kwargs) + else: + output = model(x, t_input, cond, **model_kwargs) + if model_type == "noise": + return output + elif model_type == "x_start": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) + elif model_type == "v": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x + elif model_type == "score": + sigma_t = noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return -expand_dims(sigma_t, dims) * output + + def cond_grad_fn(x, t_input): + """ + Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). + """ + with torch.enable_grad(): + x_in = x.detach().requires_grad_(True) + log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) + return torch.autograd.grad(log_prob.sum(), x_in)[0] + + def model_fn(x, t_continuous): + """ + The noise predicition model function that is used for DPM-Solver. + """ + if t_continuous.reshape((-1,)).shape[0] == 1: + t_continuous = t_continuous.expand((x.shape[0])) + if guidance_type == "uncond": + return noise_pred_fn(x, t_continuous) + elif guidance_type == "classifier": + assert classifier_fn is not None + t_input = get_model_input_time(t_continuous) + cond_grad = cond_grad_fn(x, t_input) + sigma_t = noise_schedule.marginal_std(t_continuous) + noise = noise_pred_fn(x, t_continuous) + return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad + elif guidance_type == "classifier-free": + if guidance_scale == 1. or unconditional_condition is None: + return noise_pred_fn(x, t_continuous, cond=condition) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t_continuous] * 2) + c_in = torch.cat([unconditional_condition, condition]) + noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) + return noise_uncond + guidance_scale * (noise - noise_uncond) + + assert model_type in ["noise", "x_start", "v"] + assert guidance_type in ["uncond", "classifier", "classifier-free"] + return model_fn + + +class DPM_Solver: + def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.): + """Construct a DPM-Solver. + We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0"). + If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver). + If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++). + In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True. + The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales. + Args: + model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): + `` + def model_fn(x, t_continuous): + return noise + `` + noise_schedule: A noise schedule object, such as NoiseScheduleVP. + predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model. + thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1]. + max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding. + + [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. + """ + self.model = model_fn + self.noise_schedule = noise_schedule + self.predict_x0 = predict_x0 + self.thresholding = thresholding + self.max_val = max_val + + def noise_prediction_fn(self, x, t): + """ + Return the noise prediction model. + """ + return self.model(x, t) + + def data_prediction_fn(self, x, t): + """ + Return the data prediction model (with thresholding). + """ + noise = self.noise_prediction_fn(x, t) + dims = x.dim() + alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) + x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) + if self.thresholding: + p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. + s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) + s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) + x0 = torch.clamp(x0, -s, s) / s + return x0 + + def model_fn(self, x, t): + """ + Convert the model to the noise prediction model or the data prediction model. + """ + if self.predict_x0: + return self.data_prediction_fn(x, t) + else: + return self.noise_prediction_fn(x, t) + + def get_time_steps(self, skip_type, t_T, t_0, N, device): + """Compute the intermediate time steps for sampling. + Args: + skip_type: A `str`. The type for the spacing of the time steps. We support three types: + - 'logSNR': uniform logSNR for the time steps. + - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) + - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) + t_T: A `float`. The starting time of the sampling (default is T). + t_0: A `float`. The ending time of the sampling (default is epsilon). + N: A `int`. The total number of the spacing of the time steps. + device: A torch device. + Returns: + A pytorch tensor of the time steps, with the shape (N + 1,). + """ + if skip_type == 'logSNR': + lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) + lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) + logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) + return self.noise_schedule.inverse_lambda(logSNR_steps) + elif skip_type == 'time_uniform': + return torch.linspace(t_T, t_0, N + 1).to(device) + elif skip_type == 'time_quadratic': + t_order = 2 + t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device) + return t + else: + raise ValueError( + "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) + + def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): + """ + Get the order of each step for sampling by the singlestep DPM-Solver. + We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". + Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: + - If order == 1: + We take `steps` of DPM-Solver-1 (i.e. DDIM). + - If order == 2: + - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. + - If steps % 2 == 0, we use K steps of DPM-Solver-2. + - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. + - If order == 3: + - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. + - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. + - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. + - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. + ============================================ + Args: + order: A `int`. The max order for the solver (2 or 3). + steps: A `int`. The total number of function evaluations (NFE). + skip_type: A `str`. The type for the spacing of the time steps. We support three types: + - 'logSNR': uniform logSNR for the time steps. + - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) + - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) + t_T: A `float`. The starting time of the sampling (default is T). + t_0: A `float`. The ending time of the sampling (default is epsilon). + device: A torch device. + Returns: + orders: A list of the solver order of each step. + """ + if order == 3: + K = steps // 3 + 1 + if steps % 3 == 0: + orders = [3, ] * (K - 2) + [2, 1] + elif steps % 3 == 1: + orders = [3, ] * (K - 1) + [1] + else: + orders = [3, ] * (K - 1) + [2] + elif order == 2: + if steps % 2 == 0: + K = steps // 2 + orders = [2, ] * K + else: + K = steps // 2 + 1 + orders = [2, ] * (K - 1) + [1] + elif order == 1: + K = 1 + orders = [1, ] * steps + else: + raise ValueError("'order' must be '1' or '2' or '3'.") + if skip_type == 'logSNR': + # To reproduce the results in DPM-Solver paper + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) + else: + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[ + torch.cumsum(torch.tensor([0, ] + orders)).to(device)] + return timesteps_outer, orders + + def denoise_to_zero_fn(self, x, s): + """ + Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. + """ + return self.data_prediction_fn(x, s) + + def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): + """ + DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (x.shape[0],). + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + model_s: A pytorch tensor. The model function evaluated at time `s`. + If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. + return_intermediate: A `bool`. If true, also return the model value at time `s`. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + ns = self.noise_schedule + dims = x.dim() + lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) + h = lambda_t - lambda_s + log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) + sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) + alpha_t = torch.exp(log_alpha_t) + + if self.predict_x0: + phi_1 = torch.expm1(-h) + if model_s is None: + model_s = self.model_fn(x, s) + x_t = ( + expand_dims(sigma_t / sigma_s, dims) * x + - expand_dims(alpha_t * phi_1, dims) * model_s + ) + if return_intermediate: + return x_t, {'model_s': model_s} + else: + return x_t + else: + phi_1 = torch.expm1(h) + if model_s is None: + model_s = self.model_fn(x, s) + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x + - expand_dims(sigma_t * phi_1, dims) * model_s + ) + if return_intermediate: + return x_t, {'model_s': model_s} + else: + return x_t + + def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, + solver_type='dpm_solver'): + """ + Singlestep solver DPM-Solver-2 from time `s` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (x.shape[0],). + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + r1: A `float`. The hyperparameter of the second-order solver. + model_s: A pytorch tensor. The model function evaluated at time `s`. + If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. + return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time). + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if solver_type not in ['dpm_solver', 'taylor']: + raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) + if r1 is None: + r1 = 0.5 + ns = self.noise_schedule + dims = x.dim() + lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) + h = lambda_t - lambda_s + lambda_s1 = lambda_s + r1 * h + s1 = ns.inverse_lambda(lambda_s1) + log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff( + s1), ns.marginal_log_mean_coeff(t) + sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t) + alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) + + if self.predict_x0: + phi_11 = torch.expm1(-r1 * h) + phi_1 = torch.expm1(-h) + + if model_s is None: + model_s = self.model_fn(x, s) + x_s1 = ( + expand_dims(sigma_s1 / sigma_s, dims) * x + - expand_dims(alpha_s1 * phi_11, dims) * model_s + ) + model_s1 = self.model_fn(x_s1, s1) + if solver_type == 'dpm_solver': + x_t = ( + expand_dims(sigma_t / sigma_s, dims) * x + - expand_dims(alpha_t * phi_1, dims) * model_s + - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s) + ) + elif solver_type == 'taylor': + x_t = ( + expand_dims(sigma_t / sigma_s, dims) * x + - expand_dims(alpha_t * phi_1, dims) * model_s + + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * ( + model_s1 - model_s) + ) + else: + phi_11 = torch.expm1(r1 * h) + phi_1 = torch.expm1(h) + + if model_s is None: + model_s = self.model_fn(x, s) + x_s1 = ( + expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x + - expand_dims(sigma_s1 * phi_11, dims) * model_s + ) + model_s1 = self.model_fn(x_s1, s1) + if solver_type == 'dpm_solver': + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x + - expand_dims(sigma_t * phi_1, dims) * model_s + - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s) + ) + elif solver_type == 'taylor': + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x + - expand_dims(sigma_t * phi_1, dims) * model_s + - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s) + ) + if return_intermediate: + return x_t, {'model_s': model_s, 'model_s1': model_s1} + else: + return x_t + + def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None, + return_intermediate=False, solver_type='dpm_solver'): + """ + Singlestep solver DPM-Solver-3 from time `s` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (x.shape[0],). + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + r1: A `float`. The hyperparameter of the third-order solver. + r2: A `float`. The hyperparameter of the third-order solver. + model_s: A pytorch tensor. The model function evaluated at time `s`. + If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. + model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`). + If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it. + return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if solver_type not in ['dpm_solver', 'taylor']: + raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) + if r1 is None: + r1 = 1. / 3. + if r2 is None: + r2 = 2. / 3. + ns = self.noise_schedule + dims = x.dim() + lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) + h = lambda_t - lambda_s + lambda_s1 = lambda_s + r1 * h + lambda_s2 = lambda_s + r2 * h + s1 = ns.inverse_lambda(lambda_s1) + s2 = ns.inverse_lambda(lambda_s2) + log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff( + s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t) + sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std( + s2), ns.marginal_std(t) + alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t) + + if self.predict_x0: + phi_11 = torch.expm1(-r1 * h) + phi_12 = torch.expm1(-r2 * h) + phi_1 = torch.expm1(-h) + phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1. + phi_2 = phi_1 / h + 1. + phi_3 = phi_2 / h - 0.5 + + if model_s is None: + model_s = self.model_fn(x, s) + if model_s1 is None: + x_s1 = ( + expand_dims(sigma_s1 / sigma_s, dims) * x + - expand_dims(alpha_s1 * phi_11, dims) * model_s + ) + model_s1 = self.model_fn(x_s1, s1) + x_s2 = ( + expand_dims(sigma_s2 / sigma_s, dims) * x + - expand_dims(alpha_s2 * phi_12, dims) * model_s + + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s) + ) + model_s2 = self.model_fn(x_s2, s2) + if solver_type == 'dpm_solver': + x_t = ( + expand_dims(sigma_t / sigma_s, dims) * x + - expand_dims(alpha_t * phi_1, dims) * model_s + + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s) + ) + elif solver_type == 'taylor': + D1_0 = (1. / r1) * (model_s1 - model_s) + D1_1 = (1. / r2) * (model_s2 - model_s) + D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) + D2 = 2. * (D1_1 - D1_0) / (r2 - r1) + x_t = ( + expand_dims(sigma_t / sigma_s, dims) * x + - expand_dims(alpha_t * phi_1, dims) * model_s + + expand_dims(alpha_t * phi_2, dims) * D1 + - expand_dims(alpha_t * phi_3, dims) * D2 + ) + else: + phi_11 = torch.expm1(r1 * h) + phi_12 = torch.expm1(r2 * h) + phi_1 = torch.expm1(h) + phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1. + phi_2 = phi_1 / h - 1. + phi_3 = phi_2 / h - 0.5 + + if model_s is None: + model_s = self.model_fn(x, s) + if model_s1 is None: + x_s1 = ( + expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x + - expand_dims(sigma_s1 * phi_11, dims) * model_s + ) + model_s1 = self.model_fn(x_s1, s1) + x_s2 = ( + expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x + - expand_dims(sigma_s2 * phi_12, dims) * model_s + - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s) + ) + model_s2 = self.model_fn(x_s2, s2) + if solver_type == 'dpm_solver': + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x + - expand_dims(sigma_t * phi_1, dims) * model_s + - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s) + ) + elif solver_type == 'taylor': + D1_0 = (1. / r1) * (model_s1 - model_s) + D1_1 = (1. / r2) * (model_s2 - model_s) + D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) + D2 = 2. * (D1_1 - D1_0) / (r2 - r1) + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x + - expand_dims(sigma_t * phi_1, dims) * model_s + - expand_dims(sigma_t * phi_2, dims) * D1 + - expand_dims(sigma_t * phi_3, dims) * D2 + ) + + if return_intermediate: + return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2} + else: + return x_t + + def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"): + """ + Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + model_prev_list: A list of pytorch tensor. The previous computed model values. + t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if solver_type not in ['dpm_solver', 'taylor']: + raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) + ns = self.noise_schedule + dims = x.dim() + model_prev_1, model_prev_0 = model_prev_list + t_prev_1, t_prev_0 = t_prev_list + lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda( + t_prev_0), ns.marginal_lambda(t) + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + alpha_t = torch.exp(log_alpha_t) + + h_0 = lambda_prev_0 - lambda_prev_1 + h = lambda_t - lambda_prev_0 + r0 = h_0 / h + D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) + if self.predict_x0: + if solver_type == 'dpm_solver': + x_t = ( + expand_dims(sigma_t / sigma_prev_0, dims) * x + - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 + - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0 + ) + elif solver_type == 'taylor': + x_t = ( + expand_dims(sigma_t / sigma_prev_0, dims) * x + - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 + + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0 + ) + else: + if solver_type == 'dpm_solver': + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x + - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 + - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0 + ) + elif solver_type == 'taylor': + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x + - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 + - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0 + ) + return x_t + + def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'): + """ + Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + model_prev_list: A list of pytorch tensor. The previous computed model values. + t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + ns = self.noise_schedule + dims = x.dim() + model_prev_2, model_prev_1, model_prev_0 = model_prev_list + t_prev_2, t_prev_1, t_prev_0 = t_prev_list + lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda( + t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + alpha_t = torch.exp(log_alpha_t) + + h_1 = lambda_prev_1 - lambda_prev_2 + h_0 = lambda_prev_0 - lambda_prev_1 + h = lambda_t - lambda_prev_0 + r0, r1 = h_0 / h, h_1 / h + D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) + D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2) + D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1) + D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1) + if self.predict_x0: + x_t = ( + expand_dims(sigma_t / sigma_prev_0, dims) * x + - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 + + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1 + - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2 + ) + else: + x_t = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x + - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 + - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1 + - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2 + ) + return x_t + + def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, + r2=None): + """ + Singlestep DPM-Solver with the order `order` from time `s` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + s: A pytorch tensor. The starting time, with the shape (x.shape[0],). + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. + return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + r1: A `float`. The hyperparameter of the second-order or third-order solver. + r2: A `float`. The hyperparameter of the third-order solver. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if order == 1: + return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate) + elif order == 2: + return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, + solver_type=solver_type, r1=r1) + elif order == 3: + return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, + solver_type=solver_type, r1=r1, r2=r2) + else: + raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) + + def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'): + """ + Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. + Args: + x: A pytorch tensor. The initial value at time `s`. + model_prev_list: A list of pytorch tensor. The previous computed model values. + t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) + t: A pytorch tensor. The ending time, with the shape (x.shape[0],). + order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + Returns: + x_t: A pytorch tensor. The approximated solution at time `t`. + """ + if order == 1: + return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) + elif order == 2: + return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) + elif order == 3: + return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) + else: + raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) + + def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, + solver_type='dpm_solver'): + """ + The adaptive step size solver based on singlestep DPM-Solver. + Args: + x: A pytorch tensor. The initial value at time `t_T`. + order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. + t_T: A `float`. The starting time of the sampling (default is T). + t_0: A `float`. The ending time of the sampling (default is epsilon). + h_init: A `float`. The initial step size (for logSNR). + atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. + rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. + theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. + t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the + current time and `t_0` is less than `t_err`. The default setting is 1e-5. + solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. + The type slightly impacts the performance. We recommend to use 'dpm_solver' type. + Returns: + x_0: A pytorch tensor. The approximated solution at time `t_0`. + [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. + """ + ns = self.noise_schedule + s = t_T * torch.ones((x.shape[0],)).to(x) + lambda_s = ns.marginal_lambda(s) + lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) + h = h_init * torch.ones_like(s).to(x) + x_prev = x + nfe = 0 + if order == 2: + r1 = 0.5 + lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True) + higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, + solver_type=solver_type, + **kwargs) + elif order == 3: + r1, r2 = 1. / 3., 2. / 3. + lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, + return_intermediate=True, + solver_type=solver_type) + higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, + solver_type=solver_type, + **kwargs) + else: + raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) + while torch.abs((s - t_0)).mean() > t_err: + t = ns.inverse_lambda(lambda_s + h) + x_lower, lower_noise_kwargs = lower_update(x, s, t) + x_higher = higher_update(x, s, t, **lower_noise_kwargs) + delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) + norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) + E = norm_fn((x_higher - x_lower) / delta).max() + if torch.all(E <= 1.): + x = x_higher + s = t + x_prev = x_lower + lambda_s = ns.marginal_lambda(s) + h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s) + nfe += order + print('adaptive solver nfe', nfe) + return x + + def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform', + method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', + atol=0.0078, rtol=0.05, + ): + """ + Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`. + ===================================================== + We support the following algorithms for both noise prediction model and data prediction model: + - 'singlestep': + Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver. + We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps). + The total number of function evaluations (NFE) == `steps`. + Given a fixed NFE == `steps`, the sampling procedure is: + - If `order` == 1: + - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM). + - If `order` == 2: + - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling. + - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2. + - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. + - If `order` == 3: + - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. + - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. + - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1. + - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2. + - 'multistep': + Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`. + We initialize the first `order` values by lower order multistep solvers. + Given a fixed NFE == `steps`, the sampling procedure is: + Denote K = steps. + - If `order` == 1: + - We use K steps of DPM-Solver-1 (i.e. DDIM). + - If `order` == 2: + - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2. + - If `order` == 3: + - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3. + - 'singlestep_fixed': + Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3). + We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. + - 'adaptive': + Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper). + We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. + You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs + (NFE) and the sample quality. + - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2. + - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3. + ===================================================== + Some advices for choosing the algorithm: + - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs: + Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`. + e.g. + >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False) + >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, + skip_type='time_uniform', method='singlestep') + - For **guided sampling with large guidance scale** by DPMs: + Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`. + e.g. + >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True) + >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2, + skip_type='time_uniform', method='multistep') + We support three types of `skip_type`: + - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images** + - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**. + - 'time_quadratic': quadratic time for the time steps. + ===================================================== + Args: + x: A pytorch tensor. The initial value at time `t_start` + e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution. + steps: A `int`. The total number of function evaluations (NFE). + t_start: A `float`. The starting time of the sampling. + If `T` is None, we use self.noise_schedule.T (default is 1.0). + t_end: A `float`. The ending time of the sampling. + If `t_end` is None, we use 1. / self.noise_schedule.total_N. + e.g. if total_N == 1000, we have `t_end` == 1e-3. + For discrete-time DPMs: + - We recommend `t_end` == 1. / self.noise_schedule.total_N. + For continuous-time DPMs: + - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15. + order: A `int`. The order of DPM-Solver. + skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'. + method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'. + denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step. + Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1). + This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and + score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID + for diffusion models sampling by diffusion SDEs for low-resolutional images + (such as CIFAR-10). However, we observed that such trick does not matter for + high-resolutional images. As it needs an additional NFE, we do not recommend + it for high-resolutional images. + lower_order_final: A `bool`. Whether to use lower order solvers at the final steps. + Only valid for `method=multistep` and `steps < 15`. We empirically find that + this trick is a key to stabilizing the sampling by DPM-Solver with very few steps + (especially for steps <= 10). So we recommend to set it to be `True`. + solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`. + atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. + rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. + Returns: + x_end: A pytorch tensor. The approximated solution at time `t_end`. + """ + t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end + t_T = self.noise_schedule.T if t_start is None else t_start + device = x.device + if method == 'adaptive': + with torch.no_grad(): + x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, + solver_type=solver_type) + elif method == 'multistep': + assert steps >= order + timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) + assert timesteps.shape[0] - 1 == steps + with torch.no_grad(): + vec_t = timesteps[0].expand((x.shape[0])) + model_prev_list = [self.model_fn(x, vec_t)] + t_prev_list = [vec_t] + # Init the first `order` values by lower order multistep DPM-Solver. + for init_order in tqdm(range(1, order), desc="DPM init order"): + vec_t = timesteps[init_order].expand(x.shape[0]) + x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, + solver_type=solver_type) + model_prev_list.append(self.model_fn(x, vec_t)) + t_prev_list.append(vec_t) + # Compute the remaining values by `order`-th order multistep DPM-Solver. + for step in tqdm(range(order, steps + 1), desc="DPM multistep"): + vec_t = timesteps[step].expand(x.shape[0]) + if lower_order_final and steps < 15: + step_order = min(order, steps + 1 - step) + else: + step_order = order + x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, + solver_type=solver_type) + for i in range(order - 1): + t_prev_list[i] = t_prev_list[i + 1] + model_prev_list[i] = model_prev_list[i + 1] + t_prev_list[-1] = vec_t + # We do not need to evaluate the final model value. + if step < steps: + model_prev_list[-1] = self.model_fn(x, vec_t) + elif method in ['singlestep', 'singlestep_fixed']: + if method == 'singlestep': + timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, + skip_type=skip_type, + t_T=t_T, t_0=t_0, + device=device) + elif method == 'singlestep_fixed': + K = steps // order + orders = [order, ] * K + timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device) + for i, order in enumerate(orders): + t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1] + timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), + N=order, device=device) + lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner) + vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0]) + h = lambda_inner[-1] - lambda_inner[0] + r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h + r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h + x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2) + if denoise_to_zero: + x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) + return x + + +############################################################# +# other utility functions +############################################################# + +def interpolate_fn(x, xp, yp): + """ + A piecewise linear function y = f(x), using xp and yp as keypoints. + We implement f(x) in a differentiable way (i.e. applicable for autograd). + The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) + Args: + x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). + xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. + yp: PyTorch tensor with shape [C, K]. + Returns: + The function values f(x), with shape [N, C]. + """ + N, K = x.shape[0], xp.shape[1] + all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) + sorted_all_x, x_indices = torch.sort(all_x, dim=2) + x_idx = torch.argmin(x_indices, dim=2) + cand_start_idx = x_idx - 1 + start_idx = torch.where( + torch.eq(x_idx, 0), + torch.tensor(1, device=x.device), + torch.where( + torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, + ), + ) + end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) + start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) + end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) + start_idx2 = torch.where( + torch.eq(x_idx, 0), + torch.tensor(0, device=x.device), + torch.where( + torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, + ), + ) + y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) + start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) + end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) + cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) + return cand + + +def expand_dims(v, dims): + """ + Expand the tensor `v` to the dim `dims`. + Args: + `v`: a PyTorch tensor with shape [N]. + `dim`: a `int`. + Returns: + a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. + """ + return v[(...,) + (None,) * (dims - 1)] \ No newline at end of file diff --git a/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py new file mode 100644 index 0000000..7d137b8 --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/sampler.py @@ -0,0 +1,87 @@ +"""SAMPLING ONLY.""" +import torch + +from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver + + +MODEL_TYPES = { + "eps": "noise", + "v": "v" +} + + +class DPMSolverSampler(object): + def __init__(self, model, **kwargs): + super().__init__() + self.model = model + to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) + self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + @torch.no_grad() + def sample(self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0., + mask=None, + x0=None, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1., + unconditional_conditioning=None, + # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + **kwargs + ): + if conditioning is not None: + if isinstance(conditioning, dict): + cbs = conditioning[list(conditioning.keys())[0]].shape[0] + if cbs != batch_size: + print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + else: + if conditioning.shape[0] != batch_size: + print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") + + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + + print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}') + + device = self.model.betas.device + if x_T is None: + img = torch.randn(size, device=device) + else: + img = x_T + + ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) + + model_fn = model_wrapper( + lambda x, t, c: self.model.apply_model(x, t, c), + ns, + model_type=MODEL_TYPES[self.model.parameterization], + guidance_type="classifier-free", + condition=conditioning, + unconditional_condition=unconditional_conditioning, + guidance_scale=unconditional_guidance_scale, + ) + + dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False) + x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True) + + return x.to(device), None \ No newline at end of file diff --git a/iopaint/model/anytext/ldm/models/diffusion/plms.py b/iopaint/model/anytext/ldm/models/diffusion/plms.py new file mode 100644 index 0000000..5f35d55 --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/plms.py @@ -0,0 +1,244 @@ +"""SAMPLING ONLY.""" + +import torch +import numpy as np +from tqdm import tqdm +from functools import partial + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like +from iopaint.model.anytext.ldm.models.diffusion.sampling_util import norm_thresholding + + +class PLMSSampler(object): + def __init__(self, model, schedule="linear", **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): + if ddim_eta != 0: + raise ValueError('ddim_eta must be 0 for PLMS') + self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) + alphas_cumprod = self.model.alphas_cumprod + assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer('betas', to_torch(self.model.betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta,verbose=verbose) + self.register_buffer('ddim_sigmas', ddim_sigmas) + self.register_buffer('ddim_alphas', ddim_alphas) + self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) + self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( + 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) + self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) + + @torch.no_grad() + def sample(self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0., + mask=None, + x0=None, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1., + unconditional_conditioning=None, + # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + dynamic_threshold=None, + **kwargs + ): + if conditioning is not None: + if isinstance(conditioning, dict): + cbs = conditioning[list(conditioning.keys())[0]].shape[0] + if cbs != batch_size: + print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + else: + if conditioning.shape[0] != batch_size: + print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + print(f'Data shape for PLMS sampling is {size}') + + samples, intermediates = self.plms_sampling(conditioning, size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ) + return samples, intermediates + + @torch.no_grad() + def plms_sampling(self, cond, shape, + x_T=None, ddim_use_original_steps=False, + callback=None, timesteps=None, quantize_denoised=False, + mask=None, x0=None, img_callback=None, log_every_t=100, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_conditioning=None, + dynamic_threshold=None): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps + elif timesteps is not None and not ddim_use_original_steps: + subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {'x_inter': [img], 'pred_x0': [img]} + time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + print(f"Running PLMS Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) + old_eps = [] + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) + + if mask is not None: + assert x0 is not None + img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? + img = img_orig * mask + (1. - mask) * img + + outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, temperature=temperature, + noise_dropout=noise_dropout, score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + old_eps=old_eps, t_next=ts_next, + dynamic_threshold=dynamic_threshold) + img, pred_x0, e_t = outs + old_eps.append(e_t) + if len(old_eps) >= 4: + old_eps.pop(0) + if callback: callback(i) + if img_callback: img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates['x_inter'].append(img) + intermediates['pred_x0'].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, + dynamic_threshold=None): + b, *_, device = *x.shape, x.device + + def get_model_output(x, t): + if unconditional_conditioning is None or unconditional_guidance_scale == 1.: + e_t = self.model.apply_model(x, t, c) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t] * 2) + c_in = torch.cat([unconditional_conditioning, c]) + e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) + e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + + if score_corrector is not None: + assert self.model.parameterization == "eps" + e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) + + return e_t + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev + sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas + sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas + + def get_x_prev_and_pred_x0(e_t, index): + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) + + # current prediction for x_0 + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + if dynamic_threshold is not None: + pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) + # direction pointing to x_t + dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + return x_prev, pred_x0 + + e_t = get_model_output(x, t) + if len(old_eps) == 0: + # Pseudo Improved Euler (2nd order) + x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) + e_t_next = get_model_output(x_prev, t_next) + e_t_prime = (e_t + e_t_next) / 2 + elif len(old_eps) == 1: + # 2nd order Pseudo Linear Multistep (Adams-Bashforth) + e_t_prime = (3 * e_t - old_eps[-1]) / 2 + elif len(old_eps) == 2: + # 3nd order Pseudo Linear Multistep (Adams-Bashforth) + e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 + elif len(old_eps) >= 3: + # 4nd order Pseudo Linear Multistep (Adams-Bashforth) + e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 + + x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) + + return x_prev, pred_x0, e_t diff --git a/iopaint/model/anytext/ldm/models/diffusion/sampling_util.py b/iopaint/model/anytext/ldm/models/diffusion/sampling_util.py new file mode 100644 index 0000000..7eff02b --- /dev/null +++ b/iopaint/model/anytext/ldm/models/diffusion/sampling_util.py @@ -0,0 +1,22 @@ +import torch +import numpy as np + + +def append_dims(x, target_dims): + """Appends dimensions to the end of a tensor until it has target_dims dimensions. + From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') + return x[(...,) + (None,) * dims_to_append] + + +def norm_thresholding(x0, value): + s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) + return x0 * (value / s) + + +def spatial_norm_thresholding(x0, value): + # b c h w + s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) + return x0 * (value / s) \ No newline at end of file diff --git a/iopaint/model/anytext/ldm/modules/attention.py b/iopaint/model/anytext/ldm/modules/attention.py new file mode 100644 index 0000000..df92aa7 --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/attention.py @@ -0,0 +1,360 @@ +from inspect import isfunction +import math +import torch +import torch.nn.functional as F +from torch import nn, einsum +from einops import rearrange, repeat +from typing import Optional, Any + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import checkpoint + + +# CrossAttn precision handling +import os + +_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32") + + +def exists(val): + return val is not None + + +def uniq(arr): + return {el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) + if not glu + else GEGLU(dim, inner_dim) + ) + + self.net = nn.Sequential( + project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = rearrange(q, "b c h w -> b (h w) c") + k = rearrange(k, "b c h w -> b c (h w)") + w_ = torch.einsum("bij,bjk->bik", q, k) + + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, "b c h w -> b c (h w)") + w_ = rearrange(w_, "b i j -> b j i") + h_ = torch.einsum("bij,bjk->bik", v, w_) + h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) + h_ = self.proj_out(h_) + + return x + h_ + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head**-0.5 + self.heads = heads + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) + ) + + def forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) + + # force cast to fp32 to avoid overflowing + if _ATTN_PRECISION == "fp32": + with torch.autocast(enabled=False, device_type="cuda"): + q, k = q.float(), k.float() + sim = einsum("b i d, b j d -> b i j", q, k) * self.scale + else: + sim = einsum("b i d, b j d -> b i j", q, k) * self.scale + + del q, k + + if exists(mask): + mask = rearrange(mask, "b ... -> b (...)") + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, "b j -> (b h) () j", h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = einsum("b i j, b j d -> b i d", sim, v) + out = rearrange(out, "(b h) n d -> b n (h d)", h=h) + return self.to_out(out) + + +class SDPACrossAttention(CrossAttention): + def forward(self, x, context=None, mask=None): + batch_size, sequence_length, inner_dim = x.shape + + if mask is not None: + mask = self.prepare_attention_mask(mask, sequence_length, batch_size) + mask = mask.view(batch_size, self.heads, -1, mask.shape[-1]) + + h = self.heads + q_in = self.to_q(x) + context = default(context, x) + + k_in = self.to_k(context) + v_in = self.to_v(context) + + head_dim = inner_dim // h + q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2) + k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2) + v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2) + + del q_in, k_in, v_in + + dtype = q.dtype + if _ATTN_PRECISION == "fp32": + q, k, v = q.float(), k.float(), v.float() + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + hidden_states = torch.nn.functional.scaled_dot_product_attention( + q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False + ) + + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, h * head_dim + ) + hidden_states = hidden_states.to(dtype) + + # linear proj + hidden_states = self.to_out[0](hidden_states) + # dropout + hidden_states = self.to_out[1](hidden_states) + return hidden_states + + +class BasicTransformerBlock(nn.Module): + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + disable_self_attn=False, + ): + super().__init__() + + if hasattr(torch.nn.functional, "scaled_dot_product_attention"): + attn_cls = SDPACrossAttention + else: + attn_cls = CrossAttention + + self.disable_self_attn = disable_self_attn + self.attn1 = attn_cls( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, + ) # is a self-attention if not self.disable_self_attn + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = attn_cls( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + return checkpoint( + self._forward, (x, context), self.parameters(), self.checkpoint + ) + + def _forward(self, x, context=None): + x = ( + self.attn1( + self.norm1(x), context=context if self.disable_self_attn else None + ) + + x + ) + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + NEW: use_linear for more efficiency instead of the 1x1 convs + """ + + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + context_dim=None, + disable_self_attn=False, + use_linear=False, + use_checkpoint=True, + ): + super().__init__() + if exists(context_dim) and not isinstance(context_dim, list): + context_dim = [context_dim] + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + if not use_linear: + self.proj_in = nn.Conv2d( + in_channels, inner_dim, kernel_size=1, stride=1, padding=0 + ) + else: + self.proj_in = nn.Linear(in_channels, inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim[d], + disable_self_attn=disable_self_attn, + checkpoint=use_checkpoint, + ) + for d in range(depth) + ] + ) + if not use_linear: + self.proj_out = zero_module( + nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + ) + else: + self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) + self.use_linear = use_linear + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + if not isinstance(context, list): + context = [context] + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c").contiguous() + if self.use_linear: + x = self.proj_in(x) + for i, block in enumerate(self.transformer_blocks): + x = block(x, context=context[i]) + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() + if not self.use_linear: + x = self.proj_out(x) + return x + x_in diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/__init__.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/model.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/model.py new file mode 100644 index 0000000..3472824 --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/diffusionmodules/model.py @@ -0,0 +1,973 @@ +# pytorch_diffusion + derived encoder decoder +import math + +import numpy as np +import torch +import torch.nn as nn + + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + + +def nonlinearity(x): + # swish + return x * torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.GroupNorm( + num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=2, padding=0 + ) + + def forward(self, x): + if self.with_conv: + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + else: + self.nin_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w) + q = q.permute(0, 2, 1) # b,hw,c + k = k.reshape(b, c, h * w) # b,c,hw + w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w) + w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b, c, h, w) + + h_ = self.proj_out(h_) + + return x + h_ + + +class AttnBlock2_0(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + # output: [1, 512, 64, 64] + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + + # q = q.reshape(b, c, h * w).transpose() + # q = q.permute(0, 2, 1) # b,hw,c + # k = k.reshape(b, c, h * w) # b,c,hw + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + # (batch, num_heads, seq_len, head_dim) + hidden_states = torch.nn.functional.scaled_dot_product_attention( + q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False + ) + hidden_states = hidden_states.transpose(1, 2) + hidden_states = hidden_states.to(q.dtype) + + h_ = self.proj_out(hidden_states) + + return x + h_ + + +def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): + assert attn_type in [ + "vanilla", + "vanilla-xformers", + "memory-efficient-cross-attn", + "linear", + "none", + ], f"attn_type {attn_type} unknown" + assert attn_kwargs is None + if hasattr(torch.nn.functional, "scaled_dot_product_attention"): + # print(f"Using torch.nn.functional.scaled_dot_product_attention") + return AttnBlock2_0(in_channels) + return AttnBlock(in_channels) + + +class Model(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + use_timestep=True, + use_linear_attn=False, + attn_type="vanilla", + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch * 4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList( + [ + torch.nn.Linear(self.ch, self.temb_ch), + torch.nn.Linear(self.temb_ch, self.temb_ch), + ] + ) + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + skip_in = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + if i_block == self.num_res_blocks: + skip_in = ch * in_ch_mult[i_level] + block.append( + ResnetBlock( + in_channels=block_in + skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x, t=None, context=None): + # assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb + ) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + double_z=True, + use_linear_attn=False, + attn_type="vanilla", + **ignore_kwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, x): + # timestep embedding + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + use_linear_attn=False, + attn_type="vanilla", + **ignorekwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,) + tuple(ch_mult) + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + print( + "Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape) + ) + ) + + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, z): + # assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + if self.tanh_out: + h = torch.tanh(h) + return h + + +class SimpleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, *args, **kwargs): + super().__init__() + self.model = nn.ModuleList( + [ + nn.Conv2d(in_channels, in_channels, 1), + ResnetBlock( + in_channels=in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=2 * in_channels, + out_channels=4 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=4 * in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + nn.Conv2d(2 * in_channels, in_channels, 1), + Upsample(in_channels, with_conv=True), + ] + ) + # end + self.norm_out = Normalize(in_channels) + self.conv_out = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + for i, layer in enumerate(self.model): + if i in [1, 2, 3]: + x = layer(x, None) + else: + x = layer(x) + + h = self.norm_out(x) + h = nonlinearity(h) + x = self.conv_out(h) + return x + + +class UpsampleDecoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + ch, + num_res_blocks, + resolution, + ch_mult=(2, 2), + dropout=0.0, + ): + super().__init__() + # upsampling + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + block_in = in_channels + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.res_blocks = nn.ModuleList() + self.upsample_blocks = nn.ModuleList() + for i_level in range(self.num_resolutions): + res_block = [] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + res_block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + self.res_blocks.append(nn.ModuleList(res_block)) + if i_level != self.num_resolutions - 1: + self.upsample_blocks.append(Upsample(block_in, True)) + curr_res = curr_res * 2 + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + # upsampling + h = x + for k, i_level in enumerate(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.res_blocks[i_level][i_block](h, None) + if i_level != self.num_resolutions - 1: + h = self.upsample_blocks[k](h) + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class LatentRescaler(nn.Module): + def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): + super().__init__() + # residual block, interpolate, residual block + self.factor = factor + self.conv_in = nn.Conv2d( + in_channels, mid_channels, kernel_size=3, stride=1, padding=1 + ) + self.res_block1 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + self.attn = AttnBlock(mid_channels) + self.res_block2 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + + self.conv_out = nn.Conv2d( + mid_channels, + out_channels, + kernel_size=1, + ) + + def forward(self, x): + x = self.conv_in(x) + for block in self.res_block1: + x = block(x, None) + x = torch.nn.functional.interpolate( + x, + size=( + int(round(x.shape[2] * self.factor)), + int(round(x.shape[3] * self.factor)), + ), + ) + x = self.attn(x) + for block in self.res_block2: + x = block(x, None) + x = self.conv_out(x) + return x + + +class MergedRescaleEncoder(nn.Module): + def __init__( + self, + in_channels, + ch, + resolution, + out_ch, + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + ch_mult=(1, 2, 4, 8), + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + intermediate_chn = ch * ch_mult[-1] + self.encoder = Encoder( + in_channels=in_channels, + num_res_blocks=num_res_blocks, + ch=ch, + ch_mult=ch_mult, + z_channels=intermediate_chn, + double_z=False, + resolution=resolution, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + out_ch=None, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=intermediate_chn, + mid_channels=intermediate_chn, + out_channels=out_ch, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.encoder(x) + x = self.rescaler(x) + return x + + +class MergedRescaleDecoder(nn.Module): + def __init__( + self, + z_channels, + out_ch, + resolution, + num_res_blocks, + attn_resolutions, + ch, + ch_mult=(1, 2, 4, 8), + dropout=0.0, + resamp_with_conv=True, + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + tmp_chn = z_channels * ch_mult[-1] + self.decoder = Decoder( + out_ch=out_ch, + z_channels=tmp_chn, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + in_channels=None, + num_res_blocks=num_res_blocks, + ch_mult=ch_mult, + resolution=resolution, + ch=ch, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=z_channels, + mid_channels=tmp_chn, + out_channels=tmp_chn, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Upsampler(nn.Module): + def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): + super().__init__() + assert out_size >= in_size + num_blocks = int(np.log2(out_size // in_size)) + 1 + factor_up = 1.0 + (out_size % in_size) + print( + f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}" + ) + self.rescaler = LatentRescaler( + factor=factor_up, + in_channels=in_channels, + mid_channels=2 * in_channels, + out_channels=in_channels, + ) + self.decoder = Decoder( + out_ch=out_channels, + resolution=out_size, + z_channels=in_channels, + num_res_blocks=2, + attn_resolutions=[], + in_channels=None, + ch=in_channels, + ch_mult=[ch_mult for _ in range(num_blocks)], + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Resize(nn.Module): + def __init__(self, in_channels=None, learned=False, mode="bilinear"): + super().__init__() + self.with_conv = learned + self.mode = mode + if self.with_conv: + print( + f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode" + ) + raise NotImplementedError() + assert in_channels is not None + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=4, stride=2, padding=1 + ) + + def forward(self, x, scale_factor=1.0): + if scale_factor == 1.0: + return x + else: + x = torch.nn.functional.interpolate( + x, mode=self.mode, align_corners=False, scale_factor=scale_factor + ) + return x diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py new file mode 100644 index 0000000..fd3d6be --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py @@ -0,0 +1,786 @@ +from abc import abstractmethod +import math + +import numpy as np +import torch as th +import torch.nn as nn +import torch.nn.functional as F + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import ( + checkpoint, + conv_nd, + linear, + avg_pool_nd, + zero_module, + normalization, + timestep_embedding, +) +from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer +from iopaint.model.anytext.ldm.util import exists + + +# dummy replace +def convert_module_to_f16(x): + pass + +def convert_module_to_f32(x): + pass + + +## go +class AttentionPool2d(nn.Module): + """ + Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py + """ + + def __init__( + self, + spacial_dim: int, + embed_dim: int, + num_heads_channels: int, + output_dim: int = None, + ): + super().__init__() + self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) + self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) + self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) + self.num_heads = embed_dim // num_heads_channels + self.attention = QKVAttention(self.num_heads) + + def forward(self, x): + b, c, *_spatial = x.shape + x = x.reshape(b, c, -1) # NC(HW) + x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) + x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) + x = self.qkv_proj(x) + x = self.attention(x) + x = self.c_proj(x) + return x[:, :, 0] + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context) + else: + x = layer(x) + return x + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate( + x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + ) + else: + x = F.interpolate(x, scale_factor=2, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + +class TransposedUpsample(nn.Module): + 'Learned 2x upsampling without padding' + def __init__(self, channels, out_channels=None, ks=5): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + + self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) + + def forward(self,x): + return self.up(x) + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, 3, padding=1 + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, (x, emb), self.parameters(), self.use_checkpoint + ) + + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = th.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + use_checkpoint=False, + use_new_attention_order=False, + ): + super().__init__() + self.channels = channels + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.use_checkpoint = use_checkpoint + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, channels * 3, 1) + if use_new_attention_order: + # split qkv before split heads + self.attention = QKVAttention(self.num_heads) + else: + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) + + def forward(self, x): + return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! + #return pt_checkpoint(self._forward, x) # pytorch + + def _forward(self, x): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1) + qkv = self.qkv(self.norm(x)) + h = self.attention(qkv) + h = self.proj_out(h) + return (x + h).reshape(b, c, *spatial) + + +def count_flops_attn(model, _x, y): + """ + A counter for the `thop` package to count the operations in an + attention operation. + Meant to be used like: + macs, params = thop.profile( + model, + inputs=(inputs, timestamps), + custom_ops={QKVAttention: QKVAttention.count_flops}, + ) + """ + b, c, *spatial = y[0].shape + num_spatial = int(np.prod(spatial)) + # We perform two matmuls with the same number of ops. + # The first computes the weight matrix, the second computes + # the combination of the value vectors. + matmul_ops = 2 * b * (num_spatial ** 2) * c + model.total_ops += th.DoubleTensor([matmul_ops]) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", q * scale, k * scale + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class QKVAttention(nn.Module): + """ + A module which performs QKV attention and splits in a different order. + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.chunk(3, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", + (q * scale).view(bs * self.n_heads, ch, length), + (k * scale).view(bs * self.n_heads, ch, length), + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + use_fp16=False, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + disable_middle_self_attn=False, + use_linear_in_transformer=False, + ): + super().__init__() + if use_spatial_transformer: + assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + from omegaconf.listconfig import ListConfig + if type(context_dim) == ListConfig: + context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError("provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult") + self.num_res_blocks = num_res_blocks + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) + print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " + f"This option has LESS priority than attention_resolutions {attention_resolutions}, " + f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " + f"attention will still not be set.") + self.use_fp16 = use_fp16 + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + if self.num_classes is not None: + if isinstance(self.num_classes, int): + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + elif self.num_classes == "continuous": + print("setting up linear c_adm embedding layer") + self.label_emb = nn.Linear(1, time_embed_dim) + else: + raise ValueError() + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, + disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, + disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(self.num_res_blocks[level] + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim, + dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or i < num_attention_blocks[level]: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads_upsample, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, + disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint + ) + ) + if level and i == self.num_res_blocks[level]: + out_ch = ch + layers.append( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + normalization(ch), + conv_nd(dims, model_channels, n_embed, 1), + #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + self.output_blocks.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + self.output_blocks.apply(convert_module_to_f32) + + def forward(self, x, timesteps=None, context=None, y=None,**kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + assert (y is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + hs = [] + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert y.shape[0] == x.shape[0] + emb = emb + self.label_emb(y) + + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + for module in self.output_blocks: + h = th.cat([h, hs.pop()], dim=1) + h = module(h, emb, context) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h) diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py new file mode 100644 index 0000000..5f92630 --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/diffusionmodules/upscaling.py @@ -0,0 +1,81 @@ +import torch +import torch.nn as nn +import numpy as np +from functools import partial + +from iopaint.model.anytext.ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule +from iopaint.model.anytext.ldm.util import default + + +class AbstractLowScaleModel(nn.Module): + # for concatenating a downsampled image to the latent representation + def __init__(self, noise_schedule_config=None): + super(AbstractLowScaleModel, self).__init__() + if noise_schedule_config is not None: + self.register_schedule(**noise_schedule_config) + + def register_schedule(self, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, + cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer('betas', to_torch(betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + + def forward(self, x): + return x, None + + def decode(self, x): + return x + + +class SimpleImageConcat(AbstractLowScaleModel): + # no noise level conditioning + def __init__(self): + super(SimpleImageConcat, self).__init__(noise_schedule_config=None) + self.max_noise_level = 0 + + def forward(self, x): + # fix to constant noise level + return x, torch.zeros(x.shape[0], device=x.device).long() + + +class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel): + def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False): + super().__init__(noise_schedule_config=noise_schedule_config) + self.max_noise_level = max_noise_level + + def forward(self, x, noise_level=None): + if noise_level is None: + noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() + else: + assert isinstance(noise_level, torch.Tensor) + z = self.q_sample(x, noise_level) + return z, noise_level + + + diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/util.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/util.py new file mode 100644 index 0000000..da29c72 --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/diffusionmodules/util.py @@ -0,0 +1,271 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import os +import math +import torch +import torch.nn as nn +import numpy as np +from einops import repeat + +from iopaint.model.anytext.ldm.util import instantiate_from_config + + +def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if schedule == "linear": + betas = ( + torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = np.clip(betas, a_min=0, a_max=0.999) + + elif schedule == "sqrt_linear": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + elif schedule == "sqrt": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas.numpy() + + +def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): + if ddim_discr_method == 'uniform': + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == 'quad': + ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) + else: + raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f'Selected timesteps for ddim sampler: {steps_out}') + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) + if verbose: + print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') + print(f'For the chosen value of eta, which is {eta}, ' + f'this results in the following sigma_t schedule for ddim sampler {sigmas}') + return sigmas.to(torch.float32), alphas.to(torch.float32), alphas_prev.astype(np.float32) + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), + "dtype": torch.get_autocast_gpu_dtype(), + "cache_enabled": torch.is_autocast_cache_enabled()} + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(), \ + torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + else: + embedding = repeat(timesteps, 'b -> b d', d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def normalization(channels): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNorm32(32, channels) + + +# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. +class SiLU(nn.Module): + def forward(self, x): + return x * torch.sigmoid(x) + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + # return super().forward(x.float()).type(x.dtype) + return super().forward(x).type(x.dtype) + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() \ No newline at end of file diff --git a/iopaint/model/anytext/ldm/modules/distributions/__init__.py b/iopaint/model/anytext/ldm/modules/distributions/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/iopaint/model/anytext/ldm/modules/distributions/distributions.py b/iopaint/model/anytext/ldm/modules/distributions/distributions.py new file mode 100644 index 0000000..f2b8ef9 --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/distributions/distributions.py @@ -0,0 +1,92 @@ +import torch +import numpy as np + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.]) + else: + if other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + + self.var - 1.0 - self.logvar, + dim=[1, 2, 3]) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var - 1.0 - self.logvar + other.logvar, + dim=[1, 2, 3]) + + def nll(self, sample, dims=[1,2,3]): + if self.deterministic: + return torch.Tensor([0.]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/iopaint/model/anytext/ldm/modules/ema.py b/iopaint/model/anytext/ldm/modules/ema.py new file mode 100644 index 0000000..bded250 --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/ema.py @@ -0,0 +1,80 @@ +import torch +from torch import nn + + +class LitEma(nn.Module): + def __init__(self, model, decay=0.9999, use_num_upates=True): + super().__init__() + if decay < 0.0 or decay > 1.0: + raise ValueError('Decay must be between 0 and 1') + + self.m_name2s_name = {} + self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) + self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates + else torch.tensor(-1, dtype=torch.int)) + + for name, p in model.named_parameters(): + if p.requires_grad: + # remove as '.'-character is not allowed in buffers + s_name = name.replace('.', '') + self.m_name2s_name.update({name: s_name}) + self.register_buffer(s_name, p.clone().detach().data) + + self.collected_params = [] + + def reset_num_updates(self): + del self.num_updates + self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) + + def forward(self, model): + decay = self.decay + + if self.num_updates >= 0: + self.num_updates += 1 + decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) + + one_minus_decay = 1.0 - decay + + with torch.no_grad(): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + + for key in m_param: + if m_param[key].requires_grad: + sname = self.m_name2s_name[key] + shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) + shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) + else: + assert not key in self.m_name2s_name + + def copy_to(self, model): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + for key in m_param: + if m_param[key].requires_grad: + m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) + else: + assert not key in self.m_name2s_name + + def store(self, parameters): + """ + Save the current parameters for restoring later. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + temporarily stored. + """ + self.collected_params = [param.clone() for param in parameters] + + def restore(self, parameters): + """ + Restore the parameters stored with the `store` method. + Useful to validate the model with EMA parameters without affecting the + original optimization process. Store the parameters before the + `copy_to` method. After validation (or model saving), use this to + restore the former parameters. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + updated with the stored parameters. + """ + for c_param, param in zip(self.collected_params, parameters): + param.data.copy_(c_param.data) diff --git a/iopaint/model/anytext/ldm/modules/encoders/__init__.py b/iopaint/model/anytext/ldm/modules/encoders/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/iopaint/model/anytext/ldm/modules/encoders/modules.py b/iopaint/model/anytext/ldm/modules/encoders/modules.py new file mode 100644 index 0000000..e7e2d0a --- /dev/null +++ b/iopaint/model/anytext/ldm/modules/encoders/modules.py @@ -0,0 +1,384 @@ +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint + +from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoProcessor, CLIPVisionModelWithProjection + +from iopaint.model.anytext.ldm.util import count_params + + +def _expand_mask(mask, dtype, tgt_len=None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + + inverted_mask = 1.0 - expanded_mask + + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + + +def _build_causal_attention_mask(bsz, seq_len, dtype): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) + mask.fill_(torch.tensor(torch.finfo(dtype).min)) + mask.triu_(1) # zero out the lower diagonal + mask = mask.unsqueeze(1) # expand mask + return mask + +class AbstractEncoder(nn.Module): + def __init__(self): + super().__init__() + + def encode(self, *args, **kwargs): + raise NotImplementedError + + +class IdentityEncoder(AbstractEncoder): + + def encode(self, x): + return x + + +class ClassEmbedder(nn.Module): + def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): + super().__init__() + self.key = key + self.embedding = nn.Embedding(n_classes, embed_dim) + self.n_classes = n_classes + self.ucg_rate = ucg_rate + + def forward(self, batch, key=None, disable_dropout=False): + if key is None: + key = self.key + # this is for use in crossattn + c = batch[key][:, None] + if self.ucg_rate > 0. and not disable_dropout: + mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) + c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1) + c = c.long() + c = self.embedding(c) + return c + + def get_unconditional_conditioning(self, bs, device="cuda"): + uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) + uc = torch.ones((bs,), device=device) * uc_class + uc = {self.key: uc} + return uc + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class FrozenT5Embedder(AbstractEncoder): + """Uses the T5 transformer encoder for text""" + def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl + super().__init__() + self.tokenizer = T5Tokenizer.from_pretrained(version) + self.transformer = T5EncoderModel.from_pretrained(version) + self.device = device + self.max_length = max_length # TODO: typical value? + if freeze: + self.freeze() + + def freeze(self): + self.transformer = self.transformer.eval() + #self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens) + + z = outputs.last_hidden_state + return z + + def encode(self, text): + return self(text) + + +class FrozenCLIPEmbedder(AbstractEncoder): + """Uses the CLIP transformer encoder for text (from huggingface)""" + LAYERS = [ + "last", + "pooled", + "hidden" + ] + def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, + freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 + super().__init__() + assert layer in self.LAYERS + self.tokenizer = CLIPTokenizer.from_pretrained(version) + self.transformer = CLIPTextModel.from_pretrained(version) + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + self.layer_idx = layer_idx + if layer == "hidden": + assert layer_idx is not None + assert 0 <= abs(layer_idx) <= 12 + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") + if self.layer == "last": + z = outputs.last_hidden_state + elif self.layer == "pooled": + z = outputs.pooler_output[:, None, :] + else: + z = outputs.hidden_states[self.layer_idx] + return z + + def encode(self, text): + return self(text) + + +class FrozenOpenCLIPEmbedder(AbstractEncoder): + """ + Uses the OpenCLIP transformer encoder for text + """ + LAYERS = [ + # "pooled", + "last", + "penultimate" + ] + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, + freeze=True, layer="last"): + super().__init__() + assert layer in self.LAYERS + model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) + del model.visual + self.model = model + + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + if self.layer == "last": + self.layer_idx = 0 + elif self.layer == "penultimate": + self.layer_idx = 1 + else: + raise NotImplementedError() + + def freeze(self): + self.model = self.model.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + tokens = open_clip.tokenize(text) + z = self.encode_with_transformer(tokens.to(self.device)) + return z + + def encode_with_transformer(self, text): + x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] + x = x + self.model.positional_embedding + x = x.permute(1, 0, 2) # NLD -> LND + x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.model.ln_final(x) + return x + + def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): + for i, r in enumerate(self.model.transformer.resblocks): + if i == len(self.model.transformer.resblocks) - self.layer_idx: + break + if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(r, x, attn_mask) + else: + x = r(x, attn_mask=attn_mask) + return x + + def encode(self, text): + return self(text) + + +class FrozenCLIPT5Encoder(AbstractEncoder): + def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", + clip_max_length=77, t5_max_length=77): + super().__init__() + self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) + self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) + print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " + f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") + + def encode(self, text): + return self(text) + + def forward(self, text): + clip_z = self.clip_encoder.encode(text) + t5_z = self.t5_encoder.encode(text) + return [clip_z, t5_z] + + +class FrozenCLIPEmbedderT3(AbstractEncoder): + """Uses the CLIP transformer encoder for text (from Hugging Face)""" + def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True, use_vision=False): + super().__init__() + self.tokenizer = CLIPTokenizer.from_pretrained(version) + self.transformer = CLIPTextModel.from_pretrained(version) + if use_vision: + self.vit = CLIPVisionModelWithProjection.from_pretrained(version) + self.processor = AutoProcessor.from_pretrained(version) + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + + def embedding_forward( + self, + input_ids=None, + position_ids=None, + inputs_embeds=None, + embedding_manager=None, + ): + seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + if inputs_embeds is None: + inputs_embeds = self.token_embedding(input_ids) + if embedding_manager is not None: + inputs_embeds = embedding_manager(input_ids, inputs_embeds) + position_embeddings = self.position_embedding(position_ids) + embeddings = inputs_embeds + position_embeddings + return embeddings + + self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings) + + def encoder_forward( + self, + inputs_embeds, + attention_mask=None, + causal_attention_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + hidden_states = inputs_embeds + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + return hidden_states + + self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder) + + def text_encoder_forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + embedding_manager=None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if input_ids is None: + raise ValueError("You have to specify either input_ids") + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager) + bsz, seq_len = input_shape + # CLIP's text model uses causal mask, prepare it here. + # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 + causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to( + hidden_states.device + ) + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask, hidden_states.dtype) + last_hidden_state = self.encoder( + inputs_embeds=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + last_hidden_state = self.final_layer_norm(last_hidden_state) + return last_hidden_state + + self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model) + + def transformer_forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + embedding_manager=None, + ): + return self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + embedding_manager=embedding_manager + ) + + self.transformer.forward = transformer_forward.__get__(self.transformer) + + def freeze(self): + self.transformer = self.transformer.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text, **kwargs): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + z = self.transformer(input_ids=tokens, **kwargs) + return z + + def encode(self, text, **kwargs): + return self(text, **kwargs) diff --git a/iopaint/model/anytext/ldm/util.py b/iopaint/model/anytext/ldm/util.py new file mode 100644 index 0000000..d456a86 --- /dev/null +++ b/iopaint/model/anytext/ldm/util.py @@ -0,0 +1,197 @@ +import importlib + +import torch +from torch import optim +import numpy as np + +from inspect import isfunction +from PIL import Image, ImageDraw, ImageFont + + +def log_txt_as_img(wh, xc, size=10): + # wh a tuple of (width, height) + # xc a list of captions to plot + b = len(xc) + txts = list() + for bi in range(b): + txt = Image.new("RGB", wh, color="white") + draw = ImageDraw.Draw(txt) + font = ImageFont.truetype('font/Arial_Unicode.ttf', size=size) + nc = int(32 * (wh[0] / 256)) + lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) + + try: + draw.text((0, 0), lines, fill="black", font=font) + except UnicodeEncodeError: + print("Cant encode string for logging. Skipping.") + + txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txts.append(txt) + txts = np.stack(txts) + txts = torch.tensor(txts) + return txts + + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + + +def isimage(x): + if not isinstance(x,torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + + +def exists(x): + return x is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def mean_flat(tensor): + """ + https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config, **kwargs): + if "target" not in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +class AdamWwithEMAandWings(optim.Optimizer): + # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 + def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using + weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code + ema_power=1., param_names=()): + """AdamW that saves EMA versions of the parameters.""" + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0.0 <= ema_decay <= 1.0: + raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, + ema_power=ema_power, param_names=param_names) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Args: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + ema_params_with_grad = [] + state_sums = [] + max_exp_avg_sqs = [] + state_steps = [] + amsgrad = group['amsgrad'] + beta1, beta2 = group['betas'] + ema_decay = group['ema_decay'] + ema_power = group['ema_power'] + + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('AdamW does not support sparse gradients') + grads.append(p.grad) + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of parameter values + state['param_exp_avg'] = p.detach().float().clone() + + exp_avgs.append(state['exp_avg']) + exp_avg_sqs.append(state['exp_avg_sq']) + ema_params_with_grad.append(state['param_exp_avg']) + + if amsgrad: + max_exp_avg_sqs.append(state['max_exp_avg_sq']) + + # update the steps for each param group update + state['step'] += 1 + # record the step after step update + state_steps.append(state['step']) + + optim._functional.adamw(params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + max_exp_avg_sqs, + state_steps, + amsgrad=amsgrad, + beta1=beta1, + beta2=beta2, + lr=group['lr'], + weight_decay=group['weight_decay'], + eps=group['eps'], + maximize=False) + + cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) + for param, ema_param in zip(params_with_grad, ema_params_with_grad): + ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) + + return loss \ No newline at end of file diff --git a/iopaint/model/anytext/main.py b/iopaint/model/anytext/main.py new file mode 100644 index 0000000..dbafe50 --- /dev/null +++ b/iopaint/model/anytext/main.py @@ -0,0 +1,52 @@ +from anytext_pipeline import AnyTextPipeline +from utils import save_images + +seed = 66273235 +# seed_everything(seed) + +pipe = AnyTextPipeline( + cfg_path="/Users/cwq/code/github/AnyText/anytext/models_yaMl/anytext_sd15.yaml", + model_dir="/Users/cwq/.cache/modelscope/hub/damo/cv_anytext_text_generation_editing", + # font_path="/Users/cwq/code/github/AnyText/anytext/font/Arial_Unicode.ttf", + # font_path="/Users/cwq/code/github/AnyText/anytext/font/SourceHanSansSC-VF.ttf", + font_path="/Users/cwq/code/github/AnyText/anytext/font/SourceHanSansSC-Medium.otf", + use_fp16=False, + device="mps", +) + +img_save_folder = "SaveImages" +params = { + "show_debug": True, + "image_count": 2, + "ddim_steps": 20, +} + +# # 1. text generation +# mode = "text-generation" +# input_data = { +# "prompt": 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream', +# "seed": seed, +# "draw_pos": "/Users/cwq/code/github/AnyText/anytext/example_images/gen9.png", +# } +# results, rtn_code, rtn_warning, debug_info = pipe(input_data, mode=mode, **params) +# if rtn_code >= 0: +# save_images(results, img_save_folder) +# print(f"Done, result images are saved in: {img_save_folder}") +# if rtn_warning: +# print(rtn_warning) +# +# exit() +# 2. text editing +mode = "text-editing" +input_data = { + "prompt": 'A cake with colorful characters that reads "EVERYDAY"', + "seed": seed, + "draw_pos": "/Users/cwq/code/github/AnyText/anytext/example_images/edit7.png", + "ori_image": "/Users/cwq/code/github/AnyText/anytext/example_images/ref7.jpg", +} +results, rtn_code, rtn_warning, debug_info = pipe(input_data, mode=mode, **params) +if rtn_code >= 0: + save_images(results, img_save_folder) + print(f"Done, result images are saved in: {img_save_folder}") +if rtn_warning: + print(rtn_warning) diff --git a/iopaint/model/anytext/ocr_recog/RNN.py b/iopaint/model/anytext/ocr_recog/RNN.py new file mode 100755 index 0000000..cf16855 --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/RNN.py @@ -0,0 +1,210 @@ +from torch import nn +import torch +from .RecSVTR import Block + +class Swish(nn.Module): + def __int__(self): + super(Swish, self).__int__() + + def forward(self,x): + return x*torch.sigmoid(x) + +class Im2Im(nn.Module): + def __init__(self, in_channels, **kwargs): + super().__init__() + self.out_channels = in_channels + + def forward(self, x): + return x + +class Im2Seq(nn.Module): + def __init__(self, in_channels, **kwargs): + super().__init__() + self.out_channels = in_channels + + def forward(self, x): + B, C, H, W = x.shape + # assert H == 1 + x = x.reshape(B, C, H * W) + x = x.permute((0, 2, 1)) + return x + +class EncoderWithRNN(nn.Module): + def __init__(self, in_channels,**kwargs): + super(EncoderWithRNN, self).__init__() + hidden_size = kwargs.get('hidden_size', 256) + self.out_channels = hidden_size * 2 + self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2,batch_first=True) + + def forward(self, x): + self.lstm.flatten_parameters() + x, _ = self.lstm(x) + return x + +class SequenceEncoder(nn.Module): + def __init__(self, in_channels, encoder_type='rnn', **kwargs): + super(SequenceEncoder, self).__init__() + self.encoder_reshape = Im2Seq(in_channels) + self.out_channels = self.encoder_reshape.out_channels + self.encoder_type = encoder_type + if encoder_type == 'reshape': + self.only_reshape = True + else: + support_encoder_dict = { + 'reshape': Im2Seq, + 'rnn': EncoderWithRNN, + 'svtr': EncoderWithSVTR + } + assert encoder_type in support_encoder_dict, '{} must in {}'.format( + encoder_type, support_encoder_dict.keys()) + + self.encoder = support_encoder_dict[encoder_type]( + self.encoder_reshape.out_channels,**kwargs) + self.out_channels = self.encoder.out_channels + self.only_reshape = False + + def forward(self, x): + if self.encoder_type != 'svtr': + x = self.encoder_reshape(x) + if not self.only_reshape: + x = self.encoder(x) + return x + else: + x = self.encoder(x) + x = self.encoder_reshape(x) + return x + +class ConvBNLayer(nn.Module): + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=0, + bias_attr=False, + groups=1, + act=nn.GELU): + super().__init__() + self.conv = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + groups=groups, + # weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()), + bias=bias_attr) + self.norm = nn.BatchNorm2d(out_channels) + self.act = Swish() + + def forward(self, inputs): + out = self.conv(inputs) + out = self.norm(out) + out = self.act(out) + return out + + +class EncoderWithSVTR(nn.Module): + def __init__( + self, + in_channels, + dims=64, # XS + depth=2, + hidden_dims=120, + use_guide=False, + num_heads=8, + qkv_bias=True, + mlp_ratio=2.0, + drop_rate=0.1, + attn_drop_rate=0.1, + drop_path=0., + qk_scale=None): + super(EncoderWithSVTR, self).__init__() + self.depth = depth + self.use_guide = use_guide + self.conv1 = ConvBNLayer( + in_channels, in_channels // 8, padding=1, act='swish') + self.conv2 = ConvBNLayer( + in_channels // 8, hidden_dims, kernel_size=1, act='swish') + + self.svtr_block = nn.ModuleList([ + Block( + dim=hidden_dims, + num_heads=num_heads, + mixer='Global', + HW=None, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + act_layer='swish', + attn_drop=attn_drop_rate, + drop_path=drop_path, + norm_layer='nn.LayerNorm', + epsilon=1e-05, + prenorm=False) for i in range(depth) + ]) + self.norm = nn.LayerNorm(hidden_dims, eps=1e-6) + self.conv3 = ConvBNLayer( + hidden_dims, in_channels, kernel_size=1, act='swish') + # last conv-nxn, the input is concat of input tensor and conv3 output tensor + self.conv4 = ConvBNLayer( + 2 * in_channels, in_channels // 8, padding=1, act='swish') + + self.conv1x1 = ConvBNLayer( + in_channels // 8, dims, kernel_size=1, act='swish') + self.out_channels = dims + self.apply(self._init_weights) + + def _init_weights(self, m): + # weight initialization + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out') + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.normal_(m.weight, 0, 0.01) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.ConvTranspose2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out') + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.LayerNorm): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + + def forward(self, x): + # for use guide + if self.use_guide: + z = x.clone() + z.stop_gradient = True + else: + z = x + # for short cut + h = z + # reduce dim + z = self.conv1(z) + z = self.conv2(z) + # SVTR global block + B, C, H, W = z.shape + z = z.flatten(2).permute(0, 2, 1) + + for blk in self.svtr_block: + z = blk(z) + + z = self.norm(z) + # last stage + z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2) + z = self.conv3(z) + z = torch.cat((h, z), dim=1) + z = self.conv1x1(self.conv4(z)) + + return z + +if __name__=="__main__": + svtrRNN = EncoderWithSVTR(56) + print(svtrRNN) \ No newline at end of file diff --git a/iopaint/model/anytext/ocr_recog/RecCTCHead.py b/iopaint/model/anytext/ocr_recog/RecCTCHead.py new file mode 100755 index 0000000..867ede9 --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/RecCTCHead.py @@ -0,0 +1,48 @@ +from torch import nn + + +class CTCHead(nn.Module): + def __init__(self, + in_channels, + out_channels=6625, + fc_decay=0.0004, + mid_channels=None, + return_feats=False, + **kwargs): + super(CTCHead, self).__init__() + if mid_channels is None: + self.fc = nn.Linear( + in_channels, + out_channels, + bias=True,) + else: + self.fc1 = nn.Linear( + in_channels, + mid_channels, + bias=True, + ) + self.fc2 = nn.Linear( + mid_channels, + out_channels, + bias=True, + ) + + self.out_channels = out_channels + self.mid_channels = mid_channels + self.return_feats = return_feats + + def forward(self, x, labels=None): + if self.mid_channels is None: + predicts = self.fc(x) + else: + x = self.fc1(x) + predicts = self.fc2(x) + + if self.return_feats: + result = dict() + result['ctc'] = predicts + result['ctc_neck'] = x + else: + result = predicts + + return result diff --git a/iopaint/model/anytext/ocr_recog/RecModel.py b/iopaint/model/anytext/ocr_recog/RecModel.py new file mode 100755 index 0000000..c2313bf --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/RecModel.py @@ -0,0 +1,45 @@ +from torch import nn +from .RNN import SequenceEncoder, Im2Seq, Im2Im +from .RecMv1_enhance import MobileNetV1Enhance + +from .RecCTCHead import CTCHead + +backbone_dict = {"MobileNetV1Enhance":MobileNetV1Enhance} +neck_dict = {'SequenceEncoder': SequenceEncoder, 'Im2Seq': Im2Seq,'None':Im2Im} +head_dict = {'CTCHead':CTCHead} + + +class RecModel(nn.Module): + def __init__(self, config): + super().__init__() + assert 'in_channels' in config, 'in_channels must in model config' + backbone_type = config.backbone.pop('type') + assert backbone_type in backbone_dict, f'backbone.type must in {backbone_dict}' + self.backbone = backbone_dict[backbone_type](config.in_channels, **config.backbone) + + neck_type = config.neck.pop('type') + assert neck_type in neck_dict, f'neck.type must in {neck_dict}' + self.neck = neck_dict[neck_type](self.backbone.out_channels, **config.neck) + + head_type = config.head.pop('type') + assert head_type in head_dict, f'head.type must in {head_dict}' + self.head = head_dict[head_type](self.neck.out_channels, **config.head) + + self.name = f'RecModel_{backbone_type}_{neck_type}_{head_type}' + + def load_3rd_state_dict(self, _3rd_name, _state): + self.backbone.load_3rd_state_dict(_3rd_name, _state) + self.neck.load_3rd_state_dict(_3rd_name, _state) + self.head.load_3rd_state_dict(_3rd_name, _state) + + def forward(self, x): + x = self.backbone(x) + x = self.neck(x) + x = self.head(x) + return x + + def encode(self, x): + x = self.backbone(x) + x = self.neck(x) + x = self.head.ctc_encoder(x) + return x diff --git a/iopaint/model/anytext/ocr_recog/RecMv1_enhance.py b/iopaint/model/anytext/ocr_recog/RecMv1_enhance.py new file mode 100644 index 0000000..7529b4a --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/RecMv1_enhance.py @@ -0,0 +1,232 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from .common import Activation + + +class ConvBNLayer(nn.Module): + def __init__(self, + num_channels, + filter_size, + num_filters, + stride, + padding, + channels=None, + num_groups=1, + act='hard_swish'): + super(ConvBNLayer, self).__init__() + self.act = act + self._conv = nn.Conv2d( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=filter_size, + stride=stride, + padding=padding, + groups=num_groups, + bias=False) + + self._batch_norm = nn.BatchNorm2d( + num_filters, + ) + if self.act is not None: + self._act = Activation(act_type=act, inplace=True) + + def forward(self, inputs): + y = self._conv(inputs) + y = self._batch_norm(y) + if self.act is not None: + y = self._act(y) + return y + + +class DepthwiseSeparable(nn.Module): + def __init__(self, + num_channels, + num_filters1, + num_filters2, + num_groups, + stride, + scale, + dw_size=3, + padding=1, + use_se=False): + super(DepthwiseSeparable, self).__init__() + self.use_se = use_se + self._depthwise_conv = ConvBNLayer( + num_channels=num_channels, + num_filters=int(num_filters1 * scale), + filter_size=dw_size, + stride=stride, + padding=padding, + num_groups=int(num_groups * scale)) + if use_se: + self._se = SEModule(int(num_filters1 * scale)) + self._pointwise_conv = ConvBNLayer( + num_channels=int(num_filters1 * scale), + filter_size=1, + num_filters=int(num_filters2 * scale), + stride=1, + padding=0) + + def forward(self, inputs): + y = self._depthwise_conv(inputs) + if self.use_se: + y = self._se(y) + y = self._pointwise_conv(y) + return y + + +class MobileNetV1Enhance(nn.Module): + def __init__(self, + in_channels=3, + scale=0.5, + last_conv_stride=1, + last_pool_type='max', + **kwargs): + super().__init__() + self.scale = scale + self.block_list = [] + + self.conv1 = ConvBNLayer( + num_channels=in_channels, + filter_size=3, + channels=3, + num_filters=int(32 * scale), + stride=2, + padding=1) + + conv2_1 = DepthwiseSeparable( + num_channels=int(32 * scale), + num_filters1=32, + num_filters2=64, + num_groups=32, + stride=1, + scale=scale) + self.block_list.append(conv2_1) + + conv2_2 = DepthwiseSeparable( + num_channels=int(64 * scale), + num_filters1=64, + num_filters2=128, + num_groups=64, + stride=1, + scale=scale) + self.block_list.append(conv2_2) + + conv3_1 = DepthwiseSeparable( + num_channels=int(128 * scale), + num_filters1=128, + num_filters2=128, + num_groups=128, + stride=1, + scale=scale) + self.block_list.append(conv3_1) + + conv3_2 = DepthwiseSeparable( + num_channels=int(128 * scale), + num_filters1=128, + num_filters2=256, + num_groups=128, + stride=(2, 1), + scale=scale) + self.block_list.append(conv3_2) + + conv4_1 = DepthwiseSeparable( + num_channels=int(256 * scale), + num_filters1=256, + num_filters2=256, + num_groups=256, + stride=1, + scale=scale) + self.block_list.append(conv4_1) + + conv4_2 = DepthwiseSeparable( + num_channels=int(256 * scale), + num_filters1=256, + num_filters2=512, + num_groups=256, + stride=(2, 1), + scale=scale) + self.block_list.append(conv4_2) + + for _ in range(5): + conv5 = DepthwiseSeparable( + num_channels=int(512 * scale), + num_filters1=512, + num_filters2=512, + num_groups=512, + stride=1, + dw_size=5, + padding=2, + scale=scale, + use_se=False) + self.block_list.append(conv5) + + conv5_6 = DepthwiseSeparable( + num_channels=int(512 * scale), + num_filters1=512, + num_filters2=1024, + num_groups=512, + stride=(2, 1), + dw_size=5, + padding=2, + scale=scale, + use_se=True) + self.block_list.append(conv5_6) + + conv6 = DepthwiseSeparable( + num_channels=int(1024 * scale), + num_filters1=1024, + num_filters2=1024, + num_groups=1024, + stride=last_conv_stride, + dw_size=5, + padding=2, + use_se=True, + scale=scale) + self.block_list.append(conv6) + + self.block_list = nn.Sequential(*self.block_list) + if last_pool_type == 'avg': + self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) + else: + self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) + self.out_channels = int(1024 * scale) + + def forward(self, inputs): + y = self.conv1(inputs) + y = self.block_list(y) + y = self.pool(y) + return y + +def hardsigmoid(x): + return F.relu6(x + 3., inplace=True) / 6. + +class SEModule(nn.Module): + def __init__(self, channel, reduction=4): + super(SEModule, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.conv1 = nn.Conv2d( + in_channels=channel, + out_channels=channel // reduction, + kernel_size=1, + stride=1, + padding=0, + bias=True) + self.conv2 = nn.Conv2d( + in_channels=channel // reduction, + out_channels=channel, + kernel_size=1, + stride=1, + padding=0, + bias=True) + + def forward(self, inputs): + outputs = self.avg_pool(inputs) + outputs = self.conv1(outputs) + outputs = F.relu(outputs) + outputs = self.conv2(outputs) + outputs = hardsigmoid(outputs) + x = torch.mul(inputs, outputs) + + return x diff --git a/iopaint/model/anytext/ocr_recog/RecSVTR.py b/iopaint/model/anytext/ocr_recog/RecSVTR.py new file mode 100644 index 0000000..484b3df --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/RecSVTR.py @@ -0,0 +1,591 @@ +import torch +import torch.nn as nn +import numpy as np +from torch.nn.init import trunc_normal_, zeros_, ones_ +from torch.nn import functional + + +def drop_path(x, drop_prob=0., training=False): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... + """ + if drop_prob == 0. or not training: + return x + keep_prob = torch.tensor(1 - drop_prob) + shape = (x.size()[0], ) + (1, ) * (x.ndim - 1) + random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype) + random_tensor = torch.floor(random_tensor) # binarize + output = x.divide(keep_prob) * random_tensor + return output + + +class Swish(nn.Module): + def __int__(self): + super(Swish, self).__int__() + + def forward(self,x): + return x*torch.sigmoid(x) + + +class ConvBNLayer(nn.Module): + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=0, + bias_attr=False, + groups=1, + act=nn.GELU): + super().__init__() + self.conv = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + groups=groups, + # weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()), + bias=bias_attr) + self.norm = nn.BatchNorm2d(out_channels) + self.act = act() + + def forward(self, inputs): + out = self.conv(inputs) + out = self.norm(out) + out = self.act(out) + return out + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) + + +class Identity(nn.Module): + def __init__(self): + super(Identity, self).__init__() + + def forward(self, input): + return input + + +class Mlp(nn.Module): + def __init__(self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + if isinstance(act_layer, str): + self.act = Swish() + else: + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +class ConvMixer(nn.Module): + def __init__( + self, + dim, + num_heads=8, + HW=(8, 25), + local_k=(3, 3), ): + super().__init__() + self.HW = HW + self.dim = dim + self.local_mixer = nn.Conv2d( + dim, + dim, + local_k, + 1, (local_k[0] // 2, local_k[1] // 2), + groups=num_heads, + # weight_attr=ParamAttr(initializer=KaimingNormal()) + ) + + def forward(self, x): + h = self.HW[0] + w = self.HW[1] + x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w]) + x = self.local_mixer(x) + x = x.flatten(2).transpose([0, 2, 1]) + return x + + +class Attention(nn.Module): + def __init__(self, + dim, + num_heads=8, + mixer='Global', + HW=(8, 25), + local_k=(7, 11), + qkv_bias=False, + qk_scale=None, + attn_drop=0., + proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.HW = HW + if HW is not None: + H = HW[0] + W = HW[1] + self.N = H * W + self.C = dim + if mixer == 'Local' and HW is not None: + hk = local_k[0] + wk = local_k[1] + mask = torch.ones([H * W, H + hk - 1, W + wk - 1]) + for h in range(0, H): + for w in range(0, W): + mask[h * W + w, h:h + hk, w:w + wk] = 0. + mask_paddle = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk // + 2].flatten(1) + mask_inf = torch.full([H * W, H * W],fill_value=float('-inf')) + mask = torch.where(mask_paddle < 1, mask_paddle, mask_inf) + self.mask = mask[None,None,:] + # self.mask = mask.unsqueeze([0, 1]) + self.mixer = mixer + + def forward(self, x): + if self.HW is not None: + N = self.N + C = self.C + else: + _, N, C = x.shape + qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //self.num_heads)).permute((2, 0, 3, 1, 4)) + q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] + + attn = (q.matmul(k.permute((0, 1, 3, 2)))) + if self.mixer == 'Local': + attn += self.mask + attn = functional.softmax(attn, dim=-1) + attn = self.attn_drop(attn) + + x = (attn.matmul(v)).permute((0, 2, 1, 3)).reshape((-1, N, C)) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + def __init__(self, + dim, + num_heads, + mixer='Global', + local_mixer=(7, 11), + HW=(8, 25), + mlp_ratio=4., + qkv_bias=False, + qk_scale=None, + drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer='nn.LayerNorm', + epsilon=1e-6, + prenorm=True): + super().__init__() + if isinstance(norm_layer, str): + self.norm1 = eval(norm_layer)(dim, eps=epsilon) + else: + self.norm1 = norm_layer(dim) + if mixer == 'Global' or mixer == 'Local': + + self.mixer = Attention( + dim, + num_heads=num_heads, + mixer=mixer, + HW=HW, + local_k=local_mixer, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop) + elif mixer == 'Conv': + self.mixer = ConvMixer( + dim, num_heads=num_heads, HW=HW, local_k=local_mixer) + else: + raise TypeError("The mixer must be one of [Global, Local, Conv]") + + self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() + if isinstance(norm_layer, str): + self.norm2 = eval(norm_layer)(dim, eps=epsilon) + else: + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp_ratio = mlp_ratio + self.mlp = Mlp(in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop) + self.prenorm = prenorm + + def forward(self, x): + if self.prenorm: + x = self.norm1(x + self.drop_path(self.mixer(x))) + x = self.norm2(x + self.drop_path(self.mlp(x))) + else: + x = x + self.drop_path(self.mixer(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + + def __init__(self, + img_size=(32, 100), + in_channels=3, + embed_dim=768, + sub_num=2): + super().__init__() + num_patches = (img_size[1] // (2 ** sub_num)) * \ + (img_size[0] // (2 ** sub_num)) + self.img_size = img_size + self.num_patches = num_patches + self.embed_dim = embed_dim + self.norm = None + if sub_num == 2: + self.proj = nn.Sequential( + ConvBNLayer( + in_channels=in_channels, + out_channels=embed_dim // 2, + kernel_size=3, + stride=2, + padding=1, + act=nn.GELU, + bias_attr=False), + ConvBNLayer( + in_channels=embed_dim // 2, + out_channels=embed_dim, + kernel_size=3, + stride=2, + padding=1, + act=nn.GELU, + bias_attr=False)) + if sub_num == 3: + self.proj = nn.Sequential( + ConvBNLayer( + in_channels=in_channels, + out_channels=embed_dim // 4, + kernel_size=3, + stride=2, + padding=1, + act=nn.GELU, + bias_attr=False), + ConvBNLayer( + in_channels=embed_dim // 4, + out_channels=embed_dim // 2, + kernel_size=3, + stride=2, + padding=1, + act=nn.GELU, + bias_attr=False), + ConvBNLayer( + in_channels=embed_dim // 2, + out_channels=embed_dim, + kernel_size=3, + stride=2, + padding=1, + act=nn.GELU, + bias_attr=False)) + + def forward(self, x): + B, C, H, W = x.shape + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).permute(0, 2, 1) + return x + + +class SubSample(nn.Module): + def __init__(self, + in_channels, + out_channels, + types='Pool', + stride=(2, 1), + sub_norm='nn.LayerNorm', + act=None): + super().__init__() + self.types = types + if types == 'Pool': + self.avgpool = nn.AvgPool2d( + kernel_size=(3, 5), stride=stride, padding=(1, 2)) + self.maxpool = nn.MaxPool2d( + kernel_size=(3, 5), stride=stride, padding=(1, 2)) + self.proj = nn.Linear(in_channels, out_channels) + else: + self.conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size=3, + stride=stride, + padding=1, + # weight_attr=ParamAttr(initializer=KaimingNormal()) + ) + self.norm = eval(sub_norm)(out_channels) + if act is not None: + self.act = act() + else: + self.act = None + + def forward(self, x): + + if self.types == 'Pool': + x1 = self.avgpool(x) + x2 = self.maxpool(x) + x = (x1 + x2) * 0.5 + out = self.proj(x.flatten(2).permute((0, 2, 1))) + else: + x = self.conv(x) + out = x.flatten(2).permute((0, 2, 1)) + out = self.norm(out) + if self.act is not None: + out = self.act(out) + + return out + + +class SVTRNet(nn.Module): + def __init__( + self, + img_size=[48, 100], + in_channels=3, + embed_dim=[64, 128, 256], + depth=[3, 6, 3], + num_heads=[2, 4, 8], + mixer=['Local'] * 6 + ['Global'] * + 6, # Local atten, Global atten, Conv + local_mixer=[[7, 11], [7, 11], [7, 11]], + patch_merging='Conv', # Conv, Pool, None + mlp_ratio=4, + qkv_bias=True, + qk_scale=None, + drop_rate=0., + last_drop=0.1, + attn_drop_rate=0., + drop_path_rate=0.1, + norm_layer='nn.LayerNorm', + sub_norm='nn.LayerNorm', + epsilon=1e-6, + out_channels=192, + out_char_num=25, + block_unit='Block', + act='nn.GELU', + last_stage=True, + sub_num=2, + prenorm=True, + use_lenhead=False, + **kwargs): + super().__init__() + self.img_size = img_size + self.embed_dim = embed_dim + self.out_channels = out_channels + self.prenorm = prenorm + patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging + self.patch_embed = PatchEmbed( + img_size=img_size, + in_channels=in_channels, + embed_dim=embed_dim[0], + sub_num=sub_num) + num_patches = self.patch_embed.num_patches + self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)] + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim[0])) + # self.pos_embed = self.create_parameter( + # shape=[1, num_patches, embed_dim[0]], default_initializer=zeros_) + + # self.add_parameter("pos_embed", self.pos_embed) + + self.pos_drop = nn.Dropout(p=drop_rate) + Block_unit = eval(block_unit) + + dpr = np.linspace(0, drop_path_rate, sum(depth)) + self.blocks1 = nn.ModuleList( + [ + Block_unit( + dim=embed_dim[0], + num_heads=num_heads[0], + mixer=mixer[0:depth[0]][i], + HW=self.HW, + local_mixer=local_mixer[0], + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + act_layer=eval(act), + attn_drop=attn_drop_rate, + drop_path=dpr[0:depth[0]][i], + norm_layer=norm_layer, + epsilon=epsilon, + prenorm=prenorm) for i in range(depth[0]) + ] + ) + if patch_merging is not None: + self.sub_sample1 = SubSample( + embed_dim[0], + embed_dim[1], + sub_norm=sub_norm, + stride=[2, 1], + types=patch_merging) + HW = [self.HW[0] // 2, self.HW[1]] + else: + HW = self.HW + self.patch_merging = patch_merging + self.blocks2 = nn.ModuleList([ + Block_unit( + dim=embed_dim[1], + num_heads=num_heads[1], + mixer=mixer[depth[0]:depth[0] + depth[1]][i], + HW=HW, + local_mixer=local_mixer[1], + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + act_layer=eval(act), + attn_drop=attn_drop_rate, + drop_path=dpr[depth[0]:depth[0] + depth[1]][i], + norm_layer=norm_layer, + epsilon=epsilon, + prenorm=prenorm) for i in range(depth[1]) + ]) + if patch_merging is not None: + self.sub_sample2 = SubSample( + embed_dim[1], + embed_dim[2], + sub_norm=sub_norm, + stride=[2, 1], + types=patch_merging) + HW = [self.HW[0] // 4, self.HW[1]] + else: + HW = self.HW + self.blocks3 = nn.ModuleList([ + Block_unit( + dim=embed_dim[2], + num_heads=num_heads[2], + mixer=mixer[depth[0] + depth[1]:][i], + HW=HW, + local_mixer=local_mixer[2], + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + act_layer=eval(act), + attn_drop=attn_drop_rate, + drop_path=dpr[depth[0] + depth[1]:][i], + norm_layer=norm_layer, + epsilon=epsilon, + prenorm=prenorm) for i in range(depth[2]) + ]) + self.last_stage = last_stage + if last_stage: + self.avg_pool = nn.AdaptiveAvgPool2d((1, out_char_num)) + self.last_conv = nn.Conv2d( + in_channels=embed_dim[2], + out_channels=self.out_channels, + kernel_size=1, + stride=1, + padding=0, + bias=False) + self.hardswish = nn.Hardswish() + self.dropout = nn.Dropout(p=last_drop) + if not prenorm: + self.norm = eval(norm_layer)(embed_dim[-1], epsilon=epsilon) + self.use_lenhead = use_lenhead + if use_lenhead: + self.len_conv = nn.Linear(embed_dim[2], self.out_channels) + self.hardswish_len = nn.Hardswish() + self.dropout_len = nn.Dropout( + p=last_drop) + + trunc_normal_(self.pos_embed,std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight,std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + zeros_(m.bias) + elif isinstance(m, nn.LayerNorm): + zeros_(m.bias) + ones_(m.weight) + + def forward_features(self, x): + x = self.patch_embed(x) + x = x + self.pos_embed + x = self.pos_drop(x) + for blk in self.blocks1: + x = blk(x) + if self.patch_merging is not None: + x = self.sub_sample1( + x.permute([0, 2, 1]).reshape( + [-1, self.embed_dim[0], self.HW[0], self.HW[1]])) + for blk in self.blocks2: + x = blk(x) + if self.patch_merging is not None: + x = self.sub_sample2( + x.permute([0, 2, 1]).reshape( + [-1, self.embed_dim[1], self.HW[0] // 2, self.HW[1]])) + for blk in self.blocks3: + x = blk(x) + if not self.prenorm: + x = self.norm(x) + return x + + def forward(self, x): + x = self.forward_features(x) + if self.use_lenhead: + len_x = self.len_conv(x.mean(1)) + len_x = self.dropout_len(self.hardswish_len(len_x)) + if self.last_stage: + if self.patch_merging is not None: + h = self.HW[0] // 4 + else: + h = self.HW[0] + x = self.avg_pool( + x.permute([0, 2, 1]).reshape( + [-1, self.embed_dim[2], h, self.HW[1]])) + x = self.last_conv(x) + x = self.hardswish(x) + x = self.dropout(x) + if self.use_lenhead: + return x, len_x + return x + + +if __name__=="__main__": + a = torch.rand(1,3,48,100) + svtr = SVTRNet() + + out = svtr(a) + print(svtr) + print(out.size()) \ No newline at end of file diff --git a/iopaint/model/anytext/ocr_recog/common.py b/iopaint/model/anytext/ocr_recog/common.py new file mode 100644 index 0000000..a328bb0 --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/common.py @@ -0,0 +1,74 @@ + + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class Hswish(nn.Module): + def __init__(self, inplace=True): + super(Hswish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return x * F.relu6(x + 3., inplace=self.inplace) / 6. + +# out = max(0, min(1, slop*x+offset)) +# paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None) +class Hsigmoid(nn.Module): + def __init__(self, inplace=True): + super(Hsigmoid, self).__init__() + self.inplace = inplace + + def forward(self, x): + # torch: F.relu6(x + 3., inplace=self.inplace) / 6. + # paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6. + return F.relu6(1.2 * x + 3., inplace=self.inplace) / 6. + +class GELU(nn.Module): + def __init__(self, inplace=True): + super(GELU, self).__init__() + self.inplace = inplace + + def forward(self, x): + return torch.nn.functional.gelu(x) + + +class Swish(nn.Module): + def __init__(self, inplace=True): + super(Swish, self).__init__() + self.inplace = inplace + + def forward(self, x): + if self.inplace: + x.mul_(torch.sigmoid(x)) + return x + else: + return x*torch.sigmoid(x) + + +class Activation(nn.Module): + def __init__(self, act_type, inplace=True): + super(Activation, self).__init__() + act_type = act_type.lower() + if act_type == 'relu': + self.act = nn.ReLU(inplace=inplace) + elif act_type == 'relu6': + self.act = nn.ReLU6(inplace=inplace) + elif act_type == 'sigmoid': + raise NotImplementedError + elif act_type == 'hard_sigmoid': + self.act = Hsigmoid(inplace) + elif act_type == 'hard_swish': + self.act = Hswish(inplace=inplace) + elif act_type == 'leakyrelu': + self.act = nn.LeakyReLU(inplace=inplace) + elif act_type == 'gelu': + self.act = GELU(inplace=inplace) + elif act_type == 'swish': + self.act = Swish(inplace=inplace) + else: + raise NotImplementedError + + def forward(self, inputs): + return self.act(inputs) \ No newline at end of file diff --git a/iopaint/model/anytext/ocr_recog/en_dict.txt b/iopaint/model/anytext/ocr_recog/en_dict.txt new file mode 100644 index 0000000..7677d31 --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/en_dict.txt @@ -0,0 +1,95 @@ +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +: +; +< += +> +? +@ +A +B +C +D +E +F +G +H +I +J +K +L +M +N +O +P +Q +R +S +T +U +V +W +X +Y +Z +[ +\ +] +^ +_ +` +a +b +c +d +e +f +g +h +i +j +k +l +m +n +o +p +q +r +s +t +u +v +w +x +y +z +{ +| +} +~ +! +" +# +$ +% +& +' +( +) +* ++ +, +- +. +/ + diff --git a/iopaint/model/anytext/ocr_recog/ppocr_keys_v1.txt b/iopaint/model/anytext/ocr_recog/ppocr_keys_v1.txt new file mode 100644 index 0000000..84b885d --- /dev/null +++ b/iopaint/model/anytext/ocr_recog/ppocr_keys_v1.txt @@ -0,0 +1,6623 @@ +' +疗 +绚 +诚 +娇 +溜 +题 +贿 +者 +廖 +更 +纳 +加 +奉 +公 +一 +就 +汴 +计 +与 +路 +房 +原 +妇 +2 +0 +8 +- +7 +其 +> +: +] +, +, +骑 +刈 +全 +消 +昏 +傈 +安 +久 +钟 +嗅 +不 +影 +处 +驽 +蜿 +资 +关 +椤 +地 +瘸 +专 +问 +忖 +票 +嫉 +炎 +韵 +要 +月 +田 +节 +陂 +鄙 +捌 +备 +拳 +伺 +眼 +网 +盎 +大 +傍 +心 +东 +愉 +汇 +蹿 +科 +每 +业 +里 +航 +晏 +字 +平 +录 +先 +1 +3 +彤 +鲶 +产 +稍 +督 +腴 +有 +象 +岳 +注 +绍 +在 +泺 +文 +定 +核 +名 +水 +过 +理 +让 +偷 +率 +等 +这 +发 +” +为 +含 +肥 +酉 +相 +鄱 +七 +编 +猥 +锛 +日 +镀 +蒂 +掰 +倒 +辆 +栾 +栗 +综 +涩 +州 +雌 +滑 +馀 +了 +机 +块 +司 +宰 +甙 +兴 +矽 +抚 +保 +用 +沧 +秩 +如 +收 +息 +滥 +页 +疑 +埠 +! +! +姥 +异 +橹 +钇 +向 +下 +跄 +的 +椴 +沫 +国 +绥 +獠 +报 +开 +民 +蜇 +何 +分 +凇 +长 +讥 +藏 +掏 +施 +羽 +中 +讲 +派 +嘟 +人 +提 +浼 +间 +世 +而 +古 +多 +倪 +唇 +饯 +控 +庚 +首 +赛 +蜓 +味 +断 +制 +觉 +技 +替 +艰 +溢 +潮 +夕 +钺 +外 +摘 +枋 +动 +双 +单 +啮 +户 +枇 +确 +锦 +曜 +杜 +或 +能 +效 +霜 +盒 +然 +侗 +电 +晁 +放 +步 +鹃 +新 +杖 +蜂 +吒 +濂 +瞬 +评 +总 +隍 +对 +独 +合 +也 +是 +府 +青 +天 +诲 +墙 +组 +滴 +级 +邀 +帘 +示 +已 +时 +骸 +仄 +泅 +和 +遨 +店 +雇 +疫 +持 +巍 +踮 +境 +只 +亨 +目 +鉴 +崤 +闲 +体 +泄 +杂 +作 +般 +轰 +化 +解 +迂 +诿 +蛭 +璀 +腾 +告 +版 +服 +省 +师 +小 +规 +程 +线 +海 +办 +引 +二 +桧 +牌 +砺 +洄 +裴 +修 +图 +痫 +胡 +许 +犊 +事 +郛 +基 +柴 +呼 +食 +研 +奶 +律 +蛋 +因 +葆 +察 +戏 +褒 +戒 +再 +李 +骁 +工 +貂 +油 +鹅 +章 +啄 +休 +场 +给 +睡 +纷 +豆 +器 +捎 +说 +敏 +学 +会 +浒 +设 +诊 +格 +廓 +查 +来 +霓 +室 +溆 +¢ +诡 +寥 +焕 +舜 +柒 +狐 +回 +戟 +砾 +厄 +实 +翩 +尿 +五 +入 +径 +惭 +喹 +股 +宇 +篝 +| +; +美 +期 +云 +九 +祺 +扮 +靠 +锝 +槌 +系 +企 +酰 +阊 +暂 +蚕 +忻 +豁 +本 +羹 +执 +条 +钦 +H +獒 +限 +进 +季 +楦 +于 +芘 +玖 +铋 +茯 +未 +答 +粘 +括 +样 +精 +欠 +矢 +甥 +帷 +嵩 +扣 +令 +仔 +风 +皈 +行 +支 +部 +蓉 +刮 +站 +蜡 +救 +钊 +汗 +松 +嫌 +成 +可 +. +鹤 +院 +从 +交 +政 +怕 +活 +调 +球 +局 +验 +髌 +第 +韫 +谗 +串 +到 +圆 +年 +米 +/ +* +友 +忿 +检 +区 +看 +自 +敢 +刃 +个 +兹 +弄 +流 +留 +同 +没 +齿 +星 +聆 +轼 +湖 +什 +三 +建 +蛔 +儿 +椋 +汕 +震 +颧 +鲤 +跟 +力 +情 +璺 +铨 +陪 +务 +指 +族 +训 +滦 +鄣 +濮 +扒 +商 +箱 +十 +召 +慷 +辗 +所 +莞 +管 +护 +臭 +横 +硒 +嗓 +接 +侦 +六 +露 +党 +馋 +驾 +剖 +高 +侬 +妪 +幂 +猗 +绺 +骐 +央 +酐 +孝 +筝 +课 +徇 +缰 +门 +男 +西 +项 +句 +谙 +瞒 +秃 +篇 +教 +碲 +罚 +声 +呐 +景 +前 +富 +嘴 +鳌 +稀 +免 +朋 +啬 +睐 +去 +赈 +鱼 +住 +肩 +愕 +速 +旁 +波 +厅 +健 +茼 +厥 +鲟 +谅 +投 +攸 +炔 +数 +方 +击 +呋 +谈 +绩 +别 +愫 +僚 +躬 +鹧 +胪 +炳 +招 +喇 +膨 +泵 +蹦 +毛 +结 +5 +4 +谱 +识 +陕 +粽 +婚 +拟 +构 +且 +搜 +任 +潘 +比 +郢 +妨 +醪 +陀 +桔 +碘 +扎 +选 +哈 +骷 +楷 +亿 +明 +缆 +脯 +监 +睫 +逻 +婵 +共 +赴 +淝 +凡 +惦 +及 +达 +揖 +谩 +澹 +减 +焰 +蛹 +番 +祁 +柏 +员 +禄 +怡 +峤 +龙 +白 +叽 +生 +闯 +起 +细 +装 +谕 +竟 +聚 +钙 +上 +导 +渊 +按 +艾 +辘 +挡 +耒 +盹 +饪 +臀 +记 +邮 +蕙 +受 +各 +医 +搂 +普 +滇 +朗 +茸 +带 +翻 +酚 +( +光 +堤 +墟 +蔷 +万 +幻 +〓 +瑙 +辈 +昧 +盏 +亘 +蛀 +吉 +铰 +请 +子 +假 +闻 +税 +井 +诩 +哨 +嫂 +好 +面 +琐 +校 +馊 +鬣 +缂 +营 +访 +炖 +占 +农 +缀 +否 +经 +钚 +棵 +趟 +张 +亟 +吏 +茶 +谨 +捻 +论 +迸 +堂 +玉 +信 +吧 +瞠 +乡 +姬 +寺 +咬 +溏 +苄 +皿 +意 +赉 +宝 +尔 +钰 +艺 +特 +唳 +踉 +都 +荣 +倚 +登 +荐 +丧 +奇 +涵 +批 +炭 +近 +符 +傩 +感 +道 +着 +菊 +虹 +仲 +众 +懈 +濯 +颞 +眺 +南 +释 +北 +缝 +标 +既 +茗 +整 +撼 +迤 +贲 +挎 +耱 +拒 +某 +妍 +卫 +哇 +英 +矶 +藩 +治 +他 +元 +领 +膜 +遮 +穗 +蛾 +飞 +荒 +棺 +劫 +么 +市 +火 +温 +拈 +棚 +洼 +转 +果 +奕 +卸 +迪 +伸 +泳 +斗 +邡 +侄 +涨 +屯 +萋 +胭 +氡 +崮 +枞 +惧 +冒 +彩 +斜 +手 +豚 +随 +旭 +淑 +妞 +形 +菌 +吲 +沱 +争 +驯 +歹 +挟 +兆 +柱 +传 +至 +包 +内 +响 +临 +红 +功 +弩 +衡 +寂 +禁 +老 +棍 +耆 +渍 +织 +害 +氵 +渑 +布 +载 +靥 +嗬 +虽 +苹 +咨 +娄 +库 +雉 +榜 +帜 +嘲 +套 +瑚 +亲 +簸 +欧 +边 +6 +腿 +旮 +抛 +吹 +瞳 +得 +镓 +梗 +厨 +继 +漾 +愣 +憨 +士 +策 +窑 +抑 +躯 +襟 +脏 +参 +贸 +言 +干 +绸 +鳄 +穷 +藜 +音 +折 +详 +) +举 +悍 +甸 +癌 +黎 +谴 +死 +罩 +迁 +寒 +驷 +袖 +媒 +蒋 +掘 +模 +纠 +恣 +观 +祖 +蛆 +碍 +位 +稿 +主 +澧 +跌 +筏 +京 +锏 +帝 +贴 +证 +糠 +才 +黄 +鲸 +略 +炯 +饱 +四 +出 +园 +犀 +牧 +容 +汉 +杆 +浈 +汰 +瑷 +造 +虫 +瘩 +怪 +驴 +济 +应 +花 +沣 +谔 +夙 +旅 +价 +矿 +以 +考 +s +u +呦 +晒 +巡 +茅 +准 +肟 +瓴 +詹 +仟 +褂 +译 +桌 +混 +宁 +怦 +郑 +抿 +些 +余 +鄂 +饴 +攒 +珑 +群 +阖 +岔 +琨 +藓 +预 +环 +洮 +岌 +宀 +杲 +瀵 +最 +常 +囡 +周 +踊 +女 +鼓 +袭 +喉 +简 +范 +薯 +遐 +疏 +粱 +黜 +禧 +法 +箔 +斤 +遥 +汝 +奥 +直 +贞 +撑 +置 +绱 +集 +她 +馅 +逗 +钧 +橱 +魉 +[ +恙 +躁 +唤 +9 +旺 +膘 +待 +脾 +惫 +购 +吗 +依 +盲 +度 +瘿 +蠖 +俾 +之 +镗 +拇 +鲵 +厝 +簧 +续 +款 +展 +啃 +表 +剔 +品 +钻 +腭 +损 +清 +锶 +统 +涌 +寸 +滨 +贪 +链 +吠 +冈 +伎 +迥 +咏 +吁 +览 +防 +迅 +失 +汾 +阔 +逵 +绀 +蔑 +列 +川 +凭 +努 +熨 +揪 +利 +俱 +绉 +抢 +鸨 +我 +即 +责 +膦 +易 +毓 +鹊 +刹 +玷 +岿 +空 +嘞 +绊 +排 +术 +估 +锷 +违 +们 +苟 +铜 +播 +肘 +件 +烫 +审 +鲂 +广 +像 +铌 +惰 +铟 +巳 +胍 +鲍 +康 +憧 +色 +恢 +想 +拷 +尤 +疳 +知 +S +Y +F +D +A +峄 +裕 +帮 +握 +搔 +氐 +氘 +难 +墒 +沮 +雨 +叁 +缥 +悴 +藐 +湫 +娟 +苑 +稠 +颛 +簇 +后 +阕 +闭 +蕤 +缚 +怎 +佞 +码 +嘤 +蔡 +痊 +舱 +螯 +帕 +赫 +昵 +升 +烬 +岫 +、 +疵 +蜻 +髁 +蕨 +隶 +烛 +械 +丑 +盂 +梁 +强 +鲛 +由 +拘 +揉 +劭 +龟 +撤 +钩 +呕 +孛 +费 +妻 +漂 +求 +阑 +崖 +秤 +甘 +通 +深 +补 +赃 +坎 +床 +啪 +承 +吼 +量 +暇 +钼 +烨 +阂 +擎 +脱 +逮 +称 +P +神 +属 +矗 +华 +届 +狍 +葑 +汹 +育 +患 +窒 +蛰 +佼 +静 +槎 +运 +鳗 +庆 +逝 +曼 +疱 +克 +代 +官 +此 +麸 +耧 +蚌 +晟 +例 +础 +榛 +副 +测 +唰 +缢 +迹 +灬 +霁 +身 +岁 +赭 +扛 +又 +菡 +乜 +雾 +板 +读 +陷 +徉 +贯 +郁 +虑 +变 +钓 +菜 +圾 +现 +琢 +式 +乐 +维 +渔 +浜 +左 +吾 +脑 +钡 +警 +T +啵 +拴 +偌 +漱 +湿 +硕 +止 +骼 +魄 +积 +燥 +联 +踢 +玛 +则 +窿 +见 +振 +畿 +送 +班 +钽 +您 +赵 +刨 +印 +讨 +踝 +籍 +谡 +舌 +崧 +汽 +蔽 +沪 +酥 +绒 +怖 +财 +帖 +肱 +私 +莎 +勋 +羔 +霸 +励 +哼 +帐 +将 +帅 +渠 +纪 +婴 +娩 +岭 +厘 +滕 +吻 +伤 +坝 +冠 +戊 +隆 +瘁 +介 +涧 +物 +黍 +并 +姗 +奢 +蹑 +掣 +垸 +锴 +命 +箍 +捉 +病 +辖 +琰 +眭 +迩 +艘 +绌 +繁 +寅 +若 +毋 +思 +诉 +类 +诈 +燮 +轲 +酮 +狂 +重 +反 +职 +筱 +县 +委 +磕 +绣 +奖 +晋 +濉 +志 +徽 +肠 +呈 +獐 +坻 +口 +片 +碰 +几 +村 +柿 +劳 +料 +获 +亩 +惕 +晕 +厌 +号 +罢 +池 +正 +鏖 +煨 +家 +棕 +复 +尝 +懋 +蜥 +锅 +岛 +扰 +队 +坠 +瘾 +钬 +@ +卧 +疣 +镇 +譬 +冰 +彷 +频 +黯 +据 +垄 +采 +八 +缪 +瘫 +型 +熹 +砰 +楠 +襁 +箐 +但 +嘶 +绳 +啤 +拍 +盥 +穆 +傲 +洗 +盯 +塘 +怔 +筛 +丿 +台 +恒 +喂 +葛 +永 +¥ +烟 +酒 +桦 +书 +砂 +蚝 +缉 +态 +瀚 +袄 +圳 +轻 +蛛 +超 +榧 +遛 +姒 +奘 +铮 +右 +荽 +望 +偻 +卡 +丶 +氰 +附 +做 +革 +索 +戚 +坨 +桷 +唁 +垅 +榻 +岐 +偎 +坛 +莨 +山 +殊 +微 +骇 +陈 +爨 +推 +嗝 +驹 +澡 +藁 +呤 +卤 +嘻 +糅 +逛 +侵 +郓 +酌 +德 +摇 +※ +鬃 +被 +慨 +殡 +羸 +昌 +泡 +戛 +鞋 +河 +宪 +沿 +玲 +鲨 +翅 +哽 +源 +铅 +语 +照 +邯 +址 +荃 +佬 +顺 +鸳 +町 +霭 +睾 +瓢 +夸 +椁 +晓 +酿 +痈 +咔 +侏 +券 +噎 +湍 +签 +嚷 +离 +午 +尚 +社 +锤 +背 +孟 +使 +浪 +缦 +潍 +鞅 +军 +姹 +驶 +笑 +鳟 +鲁 +》 +孽 +钜 +绿 +洱 +礴 +焯 +椰 +颖 +囔 +乌 +孔 +巴 +互 +性 +椽 +哞 +聘 +昨 +早 +暮 +胶 +炀 +隧 +低 +彗 +昝 +铁 +呓 +氽 +藉 +喔 +癖 +瑗 +姨 +权 +胱 +韦 +堑 +蜜 +酋 +楝 +砝 +毁 +靓 +歙 +锲 +究 +屋 +喳 +骨 +辨 +碑 +武 +鸠 +宫 +辜 +烊 +适 +坡 +殃 +培 +佩 +供 +走 +蜈 +迟 +翼 +况 +姣 +凛 +浔 +吃 +飘 +债 +犟 +金 +促 +苛 +崇 +坂 +莳 +畔 +绂 +兵 +蠕 +斋 +根 +砍 +亢 +欢 +恬 +崔 +剁 +餐 +榫 +快 +扶 +‖ +濒 +缠 +鳜 +当 +彭 +驭 +浦 +篮 +昀 +锆 +秸 +钳 +弋 +娣 +瞑 +夷 +龛 +苫 +拱 +致 +% +嵊 +障 +隐 +弑 +初 +娓 +抉 +汩 +累 +蓖 +" +唬 +助 +苓 +昙 +押 +毙 +破 +城 +郧 +逢 +嚏 +獭 +瞻 +溱 +婿 +赊 +跨 +恼 +璧 +萃 +姻 +貉 +灵 +炉 +密 +氛 +陶 +砸 +谬 +衔 +点 +琛 +沛 +枳 +层 +岱 +诺 +脍 +榈 +埂 +征 +冷 +裁 +打 +蹴 +素 +瘘 +逞 +蛐 +聊 +激 +腱 +萘 +踵 +飒 +蓟 +吆 +取 +咙 +簋 +涓 +矩 +曝 +挺 +揣 +座 +你 +史 +舵 +焱 +尘 +苏 +笈 +脚 +溉 +榨 +诵 +樊 +邓 +焊 +义 +庶 +儋 +蟋 +蒲 +赦 +呷 +杞 +诠 +豪 +还 +试 +颓 +茉 +太 +除 +紫 +逃 +痴 +草 +充 +鳕 +珉 +祗 +墨 +渭 +烩 +蘸 +慕 +璇 +镶 +穴 +嵘 +恶 +骂 +险 +绋 +幕 +碉 +肺 +戳 +刘 +潞 +秣 +纾 +潜 +銮 +洛 +须 +罘 +销 +瘪 +汞 +兮 +屉 +r +林 +厕 +质 +探 +划 +狸 +殚 +善 +煊 +烹 +〒 +锈 +逯 +宸 +辍 +泱 +柚 +袍 +远 +蹋 +嶙 +绝 +峥 +娥 +缍 +雀 +徵 +认 +镱 +谷 += +贩 +勉 +撩 +鄯 +斐 +洋 +非 +祚 +泾 +诒 +饿 +撬 +威 +晷 +搭 +芍 +锥 +笺 +蓦 +候 +琊 +档 +礁 +沼 +卵 +荠 +忑 +朝 +凹 +瑞 +头 +仪 +弧 +孵 +畏 +铆 +突 +衲 +车 +浩 +气 +茂 +悖 +厢 +枕 +酝 +戴 +湾 +邹 +飚 +攘 +锂 +写 +宵 +翁 +岷 +无 +喜 +丈 +挑 +嗟 +绛 +殉 +议 +槽 +具 +醇 +淞 +笃 +郴 +阅 +饼 +底 +壕 +砚 +弈 +询 +缕 +庹 +翟 +零 +筷 +暨 +舟 +闺 +甯 +撞 +麂 +茌 +蔼 +很 +珲 +捕 +棠 +角 +阉 +媛 +娲 +诽 +剿 +尉 +爵 +睬 +韩 +诰 +匣 +危 +糍 +镯 +立 +浏 +阳 +少 +盆 +舔 +擘 +匪 +申 +尬 +铣 +旯 +抖 +赘 +瓯 +居 +ˇ +哮 +游 +锭 +茏 +歌 +坏 +甚 +秒 +舞 +沙 +仗 +劲 +潺 +阿 +燧 +郭 +嗖 +霏 +忠 +材 +奂 +耐 +跺 +砀 +输 +岖 +媳 +氟 +极 +摆 +灿 +今 +扔 +腻 +枝 +奎 +药 +熄 +吨 +话 +q +额 +慑 +嘌 +协 +喀 +壳 +埭 +视 +著 +於 +愧 +陲 +翌 +峁 +颅 +佛 +腹 +聋 +侯 +咎 +叟 +秀 +颇 +存 +较 +罪 +哄 +岗 +扫 +栏 +钾 +羌 +己 +璨 +枭 +霉 +煌 +涸 +衿 +键 +镝 +益 +岢 +奏 +连 +夯 +睿 +冥 +均 +糖 +狞 +蹊 +稻 +爸 +刿 +胥 +煜 +丽 +肿 +璃 +掸 +跚 +灾 +垂 +樾 +濑 +乎 +莲 +窄 +犹 +撮 +战 +馄 +软 +络 +显 +鸢 +胸 +宾 +妲 +恕 +埔 +蝌 +份 +遇 +巧 +瞟 +粒 +恰 +剥 +桡 +博 +讯 +凯 +堇 +阶 +滤 +卖 +斌 +骚 +彬 +兑 +磺 +樱 +舷 +两 +娱 +福 +仃 +差 +找 +桁 +÷ +净 +把 +阴 +污 +戬 +雷 +碓 +蕲 +楚 +罡 +焖 +抽 +妫 +咒 +仑 +闱 +尽 +邑 +菁 +爱 +贷 +沥 +鞑 +牡 +嗉 +崴 +骤 +塌 +嗦 +订 +拮 +滓 +捡 +锻 +次 +坪 +杩 +臃 +箬 +融 +珂 +鹗 +宗 +枚 +降 +鸬 +妯 +阄 +堰 +盐 +毅 +必 +杨 +崃 +俺 +甬 +状 +莘 +货 +耸 +菱 +腼 +铸 +唏 +痤 +孚 +澳 +懒 +溅 +翘 +疙 +杷 +淼 +缙 +骰 +喊 +悉 +砻 +坷 +艇 +赁 +界 +谤 +纣 +宴 +晃 +茹 +归 +饭 +梢 +铡 +街 +抄 +肼 +鬟 +苯 +颂 +撷 +戈 +炒 +咆 +茭 +瘙 +负 +仰 +客 +琉 +铢 +封 +卑 +珥 +椿 +镧 +窨 +鬲 +寿 +御 +袤 +铃 +萎 +砖 +餮 +脒 +裳 +肪 +孕 +嫣 +馗 +嵇 +恳 +氯 +江 +石 +褶 +冢 +祸 +阻 +狈 +羞 +银 +靳 +透 +咳 +叼 +敷 +芷 +啥 +它 +瓤 +兰 +痘 +懊 +逑 +肌 +往 +捺 +坊 +甩 +呻 +〃 +沦 +忘 +膻 +祟 +菅 +剧 +崆 +智 +坯 +臧 +霍 +墅 +攻 +眯 +倘 +拢 +骠 +铐 +庭 +岙 +瓠 +′ +缺 +泥 +迢 +捶 +? +? +郏 +喙 +掷 +沌 +纯 +秘 +种 +听 +绘 +固 +螨 +团 +香 +盗 +妒 +埚 +蓝 +拖 +旱 +荞 +铀 +血 +遏 +汲 +辰 +叩 +拽 +幅 +硬 +惶 +桀 +漠 +措 +泼 +唑 +齐 +肾 +念 +酱 +虚 +屁 +耶 +旗 +砦 +闵 +婉 +馆 +拭 +绅 +韧 +忏 +窝 +醋 +葺 +顾 +辞 +倜 +堆 +辋 +逆 +玟 +贱 +疾 +董 +惘 +倌 +锕 +淘 +嘀 +莽 +俭 +笏 +绑 +鲷 +杈 +择 +蟀 +粥 +嗯 +驰 +逾 +案 +谪 +褓 +胫 +哩 +昕 +颚 +鲢 +绠 +躺 +鹄 +崂 +儒 +俨 +丝 +尕 +泌 +啊 +萸 +彰 +幺 +吟 +骄 +苣 +弦 +脊 +瑰 +〈 +诛 +镁 +析 +闪 +剪 +侧 +哟 +框 +螃 +守 +嬗 +燕 +狭 +铈 +缮 +概 +迳 +痧 +鲲 +俯 +售 +笼 +痣 +扉 +挖 +满 +咋 +援 +邱 +扇 +歪 +便 +玑 +绦 +峡 +蛇 +叨 +〖 +泽 +胃 +斓 +喋 +怂 +坟 +猪 +该 +蚬 +炕 +弥 +赞 +棣 +晔 +娠 +挲 +狡 +创 +疖 +铕 +镭 +稷 +挫 +弭 +啾 +翔 +粉 +履 +苘 +哦 +楼 +秕 +铂 +土 +锣 +瘟 +挣 +栉 +习 +享 +桢 +袅 +磨 +桂 +谦 +延 +坚 +蔚 +噗 +署 +谟 +猬 +钎 +恐 +嬉 +雒 +倦 +衅 +亏 +璩 +睹 +刻 +殿 +王 +算 +雕 +麻 +丘 +柯 +骆 +丸 +塍 +谚 +添 +鲈 +垓 +桎 +蚯 +芥 +予 +飕 +镦 +谌 +窗 +醚 +菀 +亮 +搪 +莺 +蒿 +羁 +足 +J +真 +轶 +悬 +衷 +靛 +翊 +掩 +哒 +炅 +掐 +冼 +妮 +l +谐 +稚 +荆 +擒 +犯 +陵 +虏 +浓 +崽 +刍 +陌 +傻 +孜 +千 +靖 +演 +矜 +钕 +煽 +杰 +酗 +渗 +伞 +栋 +俗 +泫 +戍 +罕 +沾 +疽 +灏 +煦 +芬 +磴 +叱 +阱 +榉 +湃 +蜀 +叉 +醒 +彪 +租 +郡 +篷 +屎 +良 +垢 +隗 +弱 +陨 +峪 +砷 +掴 +颁 +胎 +雯 +绵 +贬 +沐 +撵 +隘 +篙 +暖 +曹 +陡 +栓 +填 +臼 +彦 +瓶 +琪 +潼 +哪 +鸡 +摩 +啦 +俟 +锋 +域 +耻 +蔫 +疯 +纹 +撇 +毒 +绶 +痛 +酯 +忍 +爪 +赳 +歆 +嘹 +辕 +烈 +册 +朴 +钱 +吮 +毯 +癜 +娃 +谀 +邵 +厮 +炽 +璞 +邃 +丐 +追 +词 +瓒 +忆 +轧 +芫 +谯 +喷 +弟 +半 +冕 +裙 +掖 +墉 +绮 +寝 +苔 +势 +顷 +褥 +切 +衮 +君 +佳 +嫒 +蚩 +霞 +佚 +洙 +逊 +镖 +暹 +唛 +& +殒 +顶 +碗 +獗 +轭 +铺 +蛊 +废 +恹 +汨 +崩 +珍 +那 +杵 +曲 +纺 +夏 +薰 +傀 +闳 +淬 +姘 +舀 +拧 +卷 +楂 +恍 +讪 +厩 +寮 +篪 +赓 +乘 +灭 +盅 +鞣 +沟 +慎 +挂 +饺 +鼾 +杳 +树 +缨 +丛 +絮 +娌 +臻 +嗳 +篡 +侩 +述 +衰 +矛 +圈 +蚜 +匕 +筹 +匿 +濞 +晨 +叶 +骋 +郝 +挚 +蚴 +滞 +增 +侍 +描 +瓣 +吖 +嫦 +蟒 +匾 +圣 +赌 +毡 +癞 +恺 +百 +曳 +需 +篓 +肮 +庖 +帏 +卿 +驿 +遗 +蹬 +鬓 +骡 +歉 +芎 +胳 +屐 +禽 +烦 +晌 +寄 +媾 +狄 +翡 +苒 +船 +廉 +终 +痞 +殇 +々 +畦 +饶 +改 +拆 +悻 +萄 +£ +瓿 +乃 +訾 +桅 +匮 +溧 +拥 +纱 +铍 +骗 +蕃 +龋 +缬 +父 +佐 +疚 +栎 +醍 +掳 +蓄 +x +惆 +颜 +鲆 +榆 +〔 +猎 +敌 +暴 +谥 +鲫 +贾 +罗 +玻 +缄 +扦 +芪 +癣 +落 +徒 +臾 +恿 +猩 +托 +邴 +肄 +牵 +春 +陛 +耀 +刊 +拓 +蓓 +邳 +堕 +寇 +枉 +淌 +啡 +湄 +兽 +酷 +萼 +碚 +濠 +萤 +夹 +旬 +戮 +梭 +琥 +椭 +昔 +勺 +蜊 +绐 +晚 +孺 +僵 +宣 +摄 +冽 +旨 +萌 +忙 +蚤 +眉 +噼 +蟑 +付 +契 +瓜 +悼 +颡 +壁 +曾 +窕 +颢 +澎 +仿 +俑 +浑 +嵌 +浣 +乍 +碌 +褪 +乱 +蔟 +隙 +玩 +剐 +葫 +箫 +纲 +围 +伐 +决 +伙 +漩 +瑟 +刑 +肓 +镳 +缓 +蹭 +氨 +皓 +典 +畲 +坍 +铑 +檐 +塑 +洞 +倬 +储 +胴 +淳 +戾 +吐 +灼 +惺 +妙 +毕 +珐 +缈 +虱 +盖 +羰 +鸿 +磅 +谓 +髅 +娴 +苴 +唷 +蚣 +霹 +抨 +贤 +唠 +犬 +誓 +逍 +庠 +逼 +麓 +籼 +釉 +呜 +碧 +秧 +氩 +摔 +霄 +穸 +纨 +辟 +妈 +映 +完 +牛 +缴 +嗷 +炊 +恩 +荔 +茆 +掉 +紊 +慌 +莓 +羟 +阙 +萁 +磐 +另 +蕹 +辱 +鳐 +湮 +吡 +吩 +唐 +睦 +垠 +舒 +圜 +冗 +瞿 +溺 +芾 +囱 +匠 +僳 +汐 +菩 +饬 +漓 +黑 +霰 +浸 +濡 +窥 +毂 +蒡 +兢 +驻 +鹉 +芮 +诙 +迫 +雳 +厂 +忐 +臆 +猴 +鸣 +蚪 +栈 +箕 +羡 +渐 +莆 +捍 +眈 +哓 +趴 +蹼 +埕 +嚣 +骛 +宏 +淄 +斑 +噜 +严 +瑛 +垃 +椎 +诱 +压 +庾 +绞 +焘 +廿 +抡 +迄 +棘 +夫 +纬 +锹 +眨 +瞌 +侠 +脐 +竞 +瀑 +孳 +骧 +遁 +姜 +颦 +荪 +滚 +萦 +伪 +逸 +粳 +爬 +锁 +矣 +役 +趣 +洒 +颔 +诏 +逐 +奸 +甭 +惠 +攀 +蹄 +泛 +尼 +拼 +阮 +鹰 +亚 +颈 +惑 +勒 +〉 +际 +肛 +爷 +刚 +钨 +丰 +养 +冶 +鲽 +辉 +蔻 +画 +覆 +皴 +妊 +麦 +返 +醉 +皂 +擀 +〗 +酶 +凑 +粹 +悟 +诀 +硖 +港 +卜 +z +杀 +涕 +± +舍 +铠 +抵 +弛 +段 +敝 +镐 +奠 +拂 +轴 +跛 +袱 +e +t +沉 +菇 +俎 +薪 +峦 +秭 +蟹 +历 +盟 +菠 +寡 +液 +肢 +喻 +染 +裱 +悱 +抱 +氙 +赤 +捅 +猛 +跑 +氮 +谣 +仁 +尺 +辊 +窍 +烙 +衍 +架 +擦 +倏 +璐 +瑁 +币 +楞 +胖 +夔 +趸 +邛 +惴 +饕 +虔 +蝎 +§ +哉 +贝 +宽 +辫 +炮 +扩 +饲 +籽 +魏 +菟 +锰 +伍 +猝 +末 +琳 +哚 +蛎 +邂 +呀 +姿 +鄞 +却 +歧 +仙 +恸 +椐 +森 +牒 +寤 +袒 +婆 +虢 +雅 +钉 +朵 +贼 +欲 +苞 +寰 +故 +龚 +坭 +嘘 +咫 +礼 +硷 +兀 +睢 +汶 +’ +铲 +烧 +绕 +诃 +浃 +钿 +哺 +柜 +讼 +颊 +璁 +腔 +洽 +咐 +脲 +簌 +筠 +镣 +玮 +鞠 +谁 +兼 +姆 +挥 +梯 +蝴 +谘 +漕 +刷 +躏 +宦 +弼 +b +垌 +劈 +麟 +莉 +揭 +笙 +渎 +仕 +嗤 +仓 +配 +怏 +抬 +错 +泯 +镊 +孰 +猿 +邪 +仍 +秋 +鼬 +壹 +歇 +吵 +炼 +< +尧 +射 +柬 +廷 +胧 +霾 +凳 +隋 +肚 +浮 +梦 +祥 +株 +堵 +退 +L +鹫 +跎 +凶 +毽 +荟 +炫 +栩 +玳 +甜 +沂 +鹿 +顽 +伯 +爹 +赔 +蛴 +徐 +匡 +欣 +狰 +缸 +雹 +蟆 +疤 +默 +沤 +啜 +痂 +衣 +禅 +w +i +h +辽 +葳 +黝 +钗 +停 +沽 +棒 +馨 +颌 +肉 +吴 +硫 +悯 +劾 +娈 +马 +啧 +吊 +悌 +镑 +峭 +帆 +瀣 +涉 +咸 +疸 +滋 +泣 +翦 +拙 +癸 +钥 +蜒 ++ +尾 +庄 +凝 +泉 +婢 +渴 +谊 +乞 +陆 +锉 +糊 +鸦 +淮 +I +B +N +晦 +弗 +乔 +庥 +葡 +尻 +席 +橡 +傣 +渣 +拿 +惩 +麋 +斛 +缃 +矮 +蛏 +岘 +鸽 +姐 +膏 +催 +奔 +镒 +喱 +蠡 +摧 +钯 +胤 +柠 +拐 +璋 +鸥 +卢 +荡 +倾 +^ +_ +珀 +逄 +萧 +塾 +掇 +贮 +笆 +聂 +圃 +冲 +嵬 +M +滔 +笕 +值 +炙 +偶 +蜱 +搐 +梆 +汪 +蔬 +腑 +鸯 +蹇 +敞 +绯 +仨 +祯 +谆 +梧 +糗 +鑫 +啸 +豺 +囹 +猾 +巢 +柄 +瀛 +筑 +踌 +沭 +暗 +苁 +鱿 +蹉 +脂 +蘖 +牢 +热 +木 +吸 +溃 +宠 +序 +泞 +偿 +拜 +檩 +厚 +朐 +毗 +螳 +吞 +媚 +朽 +担 +蝗 +橘 +畴 +祈 +糟 +盱 +隼 +郜 +惜 +珠 +裨 +铵 +焙 +琚 +唯 +咚 +噪 +骊 +丫 +滢 +勤 +棉 +呸 +咣 +淀 +隔 +蕾 +窈 +饨 +挨 +煅 +短 +匙 +粕 +镜 +赣 +撕 +墩 +酬 +馁 +豌 +颐 +抗 +酣 +氓 +佑 +搁 +哭 +递 +耷 +涡 +桃 +贻 +碣 +截 +瘦 +昭 +镌 +蔓 +氚 +甲 +猕 +蕴 +蓬 +散 +拾 +纛 +狼 +猷 +铎 +埋 +旖 +矾 +讳 +囊 +糜 +迈 +粟 +蚂 +紧 +鲳 +瘢 +栽 +稼 +羊 +锄 +斟 +睁 +桥 +瓮 +蹙 +祉 +醺 +鼻 +昱 +剃 +跳 +篱 +跷 +蒜 +翎 +宅 +晖 +嗑 +壑 +峻 +癫 +屏 +狠 +陋 +袜 +途 +憎 +祀 +莹 +滟 +佶 +溥 +臣 +约 +盛 +峰 +磁 +慵 +婪 +拦 +莅 +朕 +鹦 +粲 +裤 +哎 +疡 +嫖 +琵 +窟 +堪 +谛 +嘉 +儡 +鳝 +斩 +郾 +驸 +酊 +妄 +胜 +贺 +徙 +傅 +噌 +钢 +栅 +庇 +恋 +匝 +巯 +邈 +尸 +锚 +粗 +佟 +蛟 +薹 +纵 +蚊 +郅 +绢 +锐 +苗 +俞 +篆 +淆 +膀 +鲜 +煎 +诶 +秽 +寻 +涮 +刺 +怀 +噶 +巨 +褰 +魅 +灶 +灌 +桉 +藕 +谜 +舸 +薄 +搀 +恽 +借 +牯 +痉 +渥 +愿 +亓 +耘 +杠 +柩 +锔 +蚶 +钣 +珈 +喘 +蹒 +幽 +赐 +稗 +晤 +莱 +泔 +扯 +肯 +菪 +裆 +腩 +豉 +疆 +骜 +腐 +倭 +珏 +唔 +粮 +亡 +润 +慰 +伽 +橄 +玄 +誉 +醐 +胆 +龊 +粼 +塬 +陇 +彼 +削 +嗣 +绾 +芽 +妗 +垭 +瘴 +爽 +薏 +寨 +龈 +泠 +弹 +赢 +漪 +猫 +嘧 +涂 +恤 +圭 +茧 +烽 +屑 +痕 +巾 +赖 +荸 +凰 +腮 +畈 +亵 +蹲 +偃 +苇 +澜 +艮 +换 +骺 +烘 +苕 +梓 +颉 +肇 +哗 +悄 +氤 +涠 +葬 +屠 +鹭 +植 +竺 +佯 +诣 +鲇 +瘀 +鲅 +邦 +移 +滁 +冯 +耕 +癔 +戌 +茬 +沁 +巩 +悠 +湘 +洪 +痹 +锟 +循 +谋 +腕 +鳃 +钠 +捞 +焉 +迎 +碱 +伫 +急 +榷 +奈 +邝 +卯 +辄 +皲 +卟 +醛 +畹 +忧 +稳 +雄 +昼 +缩 +阈 +睑 +扌 +耗 +曦 +涅 +捏 +瞧 +邕 +淖 +漉 +铝 +耦 +禹 +湛 +喽 +莼 +琅 +诸 +苎 +纂 +硅 +始 +嗨 +傥 +燃 +臂 +赅 +嘈 +呆 +贵 +屹 +壮 +肋 +亍 +蚀 +卅 +豹 +腆 +邬 +迭 +浊 +} +童 +螂 +捐 +圩 +勐 +触 +寞 +汊 +壤 +荫 +膺 +渌 +芳 +懿 +遴 +螈 +泰 +蓼 +蛤 +茜 +舅 +枫 +朔 +膝 +眙 +避 +梅 +判 +鹜 +璜 +牍 +缅 +垫 +藻 +黔 +侥 +惚 +懂 +踩 +腰 +腈 +札 +丞 +唾 +慈 +顿 +摹 +荻 +琬 +~ +斧 +沈 +滂 +胁 +胀 +幄 +莜 +Z +匀 +鄄 +掌 +绰 +茎 +焚 +赋 +萱 +谑 +汁 +铒 +瞎 +夺 +蜗 +野 +娆 +冀 +弯 +篁 +懵 +灞 +隽 +芡 +脘 +俐 +辩 +芯 +掺 +喏 +膈 +蝈 +觐 +悚 +踹 +蔗 +熠 +鼠 +呵 +抓 +橼 +峨 +畜 +缔 +禾 +崭 +弃 +熊 +摒 +凸 +拗 +穹 +蒙 +抒 +祛 +劝 +闫 +扳 +阵 +醌 +踪 +喵 +侣 +搬 +仅 +荧 +赎 +蝾 +琦 +买 +婧 +瞄 +寓 +皎 +冻 +赝 +箩 +莫 +瞰 +郊 +笫 +姝 +筒 +枪 +遣 +煸 +袋 +舆 +痱 +涛 +母 +〇 +启 +践 +耙 +绲 +盘 +遂 +昊 +搞 +槿 +诬 +纰 +泓 +惨 +檬 +亻 +越 +C +o +憩 +熵 +祷 +钒 +暧 +塔 +阗 +胰 +咄 +娶 +魔 +琶 +钞 +邻 +扬 +杉 +殴 +咽 +弓 +〆 +髻 +】 +吭 +揽 +霆 +拄 +殖 +脆 +彻 +岩 +芝 +勃 +辣 +剌 +钝 +嘎 +甄 +佘 +皖 +伦 +授 +徕 +憔 +挪 +皇 +庞 +稔 +芜 +踏 +溴 +兖 +卒 +擢 +饥 +鳞 +煲 +‰ +账 +颗 +叻 +斯 +捧 +鳍 +琮 +讹 +蛙 +纽 +谭 +酸 +兔 +莒 +睇 +伟 +觑 +羲 +嗜 +宜 +褐 +旎 +辛 +卦 +诘 +筋 +鎏 +溪 +挛 +熔 +阜 +晰 +鳅 +丢 +奚 +灸 +呱 +献 +陉 +黛 +鸪 +甾 +萨 +疮 +拯 +洲 +疹 +辑 +叙 +恻 +谒 +允 +柔 +烂 +氏 +逅 +漆 +拎 +惋 +扈 +湟 +纭 +啕 +掬 +擞 +哥 +忽 +涤 +鸵 +靡 +郗 +瓷 +扁 +廊 +怨 +雏 +钮 +敦 +E +懦 +憋 +汀 +拚 +啉 +腌 +岸 +f +痼 +瞅 +尊 +咀 +眩 +飙 +忌 +仝 +迦 +熬 +毫 +胯 +篑 +茄 +腺 +凄 +舛 +碴 +锵 +诧 +羯 +後 +漏 +汤 +宓 +仞 +蚁 +壶 +谰 +皑 +铄 +棰 +罔 +辅 +晶 +苦 +牟 +闽 +\ +烃 +饮 +聿 +丙 +蛳 +朱 +煤 +涔 +鳖 +犁 +罐 +荼 +砒 +淦 +妤 +黏 +戎 +孑 +婕 +瑾 +戢 +钵 +枣 +捋 +砥 +衩 +狙 +桠 +稣 +阎 +肃 +梏 +诫 +孪 +昶 +婊 +衫 +嗔 +侃 +塞 +蜃 +樵 +峒 +貌 +屿 +欺 +缫 +阐 +栖 +诟 +珞 +荭 +吝 +萍 +嗽 +恂 +啻 +蜴 +磬 +峋 +俸 +豫 +谎 +徊 +镍 +韬 +魇 +晴 +U +囟 +猜 +蛮 +坐 +囿 +伴 +亭 +肝 +佗 +蝠 +妃 +胞 +滩 +榴 +氖 +垩 +苋 +砣 +扪 +馏 +姓 +轩 +厉 +夥 +侈 +禀 +垒 +岑 +赏 +钛 +辐 +痔 +披 +纸 +碳 +“ +坞 +蠓 +挤 +荥 +沅 +悔 +铧 +帼 +蒌 +蝇 +a +p +y +n +g +哀 +浆 +瑶 +凿 +桶 +馈 +皮 +奴 +苜 +佤 +伶 +晗 +铱 +炬 +优 +弊 +氢 +恃 +甫 +攥 +端 +锌 +灰 +稹 +炝 +曙 +邋 +亥 +眶 +碾 +拉 +萝 +绔 +捷 +浍 +腋 +姑 +菖 +凌 +涞 +麽 +锢 +桨 +潢 +绎 +镰 +殆 +锑 +渝 +铬 +困 +绽 +觎 +匈 +糙 +暑 +裹 +鸟 +盔 +肽 +迷 +綦 +『 +亳 +佝 +俘 +钴 +觇 +骥 +仆 +疝 +跪 +婶 +郯 +瀹 +唉 +脖 +踞 +针 +晾 +忒 +扼 +瞩 +叛 +椒 +疟 +嗡 +邗 +肆 +跆 +玫 +忡 +捣 +咧 +唆 +艄 +蘑 +潦 +笛 +阚 +沸 +泻 +掊 +菽 +贫 +斥 +髂 +孢 +镂 +赂 +麝 +鸾 +屡 +衬 +苷 +恪 +叠 +希 +粤 +爻 +喝 +茫 +惬 +郸 +绻 +庸 +撅 +碟 +宄 +妹 +膛 +叮 +饵 +崛 +嗲 +椅 +冤 +搅 +咕 +敛 +尹 +垦 +闷 +蝉 +霎 +勰 +败 +蓑 +泸 +肤 +鹌 +幌 +焦 +浠 +鞍 +刁 +舰 +乙 +竿 +裔 +。 +茵 +函 +伊 +兄 +丨 +娜 +匍 +謇 +莪 +宥 +似 +蝽 +翳 +酪 +翠 +粑 +薇 +祢 +骏 +赠 +叫 +Q +噤 +噻 +竖 +芗 +莠 +潭 +俊 +羿 +耜 +O +郫 +趁 +嗪 +囚 +蹶 +芒 +洁 +笋 +鹑 +敲 +硝 +啶 +堡 +渲 +揩 +』 +携 +宿 +遒 +颍 +扭 +棱 +割 +萜 +蔸 +葵 +琴 +捂 +饰 +衙 +耿 +掠 +募 +岂 +窖 +涟 +蔺 +瘤 +柞 +瞪 +怜 +匹 +距 +楔 +炜 +哆 +秦 +缎 +幼 +茁 +绪 +痨 +恨 +楸 +娅 +瓦 +桩 +雪 +嬴 +伏 +榔 +妥 +铿 +拌 +眠 +雍 +缇 +‘ +卓 +搓 +哌 +觞 +噩 +屈 +哧 +髓 +咦 +巅 +娑 +侑 +淫 +膳 +祝 +勾 +姊 +莴 +胄 +疃 +薛 +蜷 +胛 +巷 +芙 +芋 +熙 +闰 +勿 +窃 +狱 +剩 +钏 +幢 +陟 +铛 +慧 +靴 +耍 +k +浙 +浇 +飨 +惟 +绗 +祜 +澈 +啼 +咪 +磷 +摞 +诅 +郦 +抹 +跃 +壬 +吕 +肖 +琏 +颤 +尴 +剡 +抠 +凋 +赚 +泊 +津 +宕 +殷 +倔 +氲 +漫 +邺 +涎 +怠 +$ +垮 +荬 +遵 +俏 +叹 +噢 +饽 +蜘 +孙 +筵 +疼 +鞭 +羧 +牦 +箭 +潴 +c +眸 +祭 +髯 +啖 +坳 +愁 +芩 +驮 +倡 +巽 +穰 +沃 +胚 +怒 +凤 +槛 +剂 +趵 +嫁 +v +邢 +灯 +鄢 +桐 +睽 +檗 +锯 +槟 +婷 +嵋 +圻 +诗 +蕈 +颠 +遭 +痢 +芸 +怯 +馥 +竭 +锗 +徜 +恭 +遍 +籁 +剑 +嘱 +苡 +龄 +僧 +桑 +潸 +弘 +澶 +楹 +悲 +讫 +愤 +腥 +悸 +谍 +椹 +呢 +桓 +葭 +攫 +阀 +翰 +躲 +敖 +柑 +郎 +笨 +橇 +呃 +魁 +燎 +脓 +葩 +磋 +垛 +玺 +狮 +沓 +砜 +蕊 +锺 +罹 +蕉 +翱 +虐 +闾 +巫 +旦 +茱 +嬷 +枯 +鹏 +贡 +芹 +汛 +矫 +绁 +拣 +禺 +佃 +讣 +舫 +惯 +乳 +趋 +疲 +挽 +岚 +虾 +衾 +蠹 +蹂 +飓 +氦 +铖 +孩 +稞 +瑜 +壅 +掀 +勘 +妓 +畅 +髋 +W +庐 +牲 +蓿 +榕 +练 +垣 +唱 +邸 +菲 +昆 +婺 +穿 +绡 +麒 +蚱 +掂 +愚 +泷 +涪 +漳 +妩 +娉 +榄 +讷 +觅 +旧 +藤 +煮 +呛 +柳 +腓 +叭 +庵 +烷 +阡 +罂 +蜕 +擂 +猖 +咿 +媲 +脉 +【 +沏 +貅 +黠 +熏 +哲 +烁 +坦 +酵 +兜 +× +潇 +撒 +剽 +珩 +圹 +乾 +摸 +樟 +帽 +嗒 +襄 +魂 +轿 +憬 +锡 +〕 +喃 +皆 +咖 +隅 +脸 +残 +泮 +袂 +鹂 +珊 +囤 +捆 +咤 +误 +徨 +闹 +淙 +芊 +淋 +怆 +囗 +拨 +梳 +渤 +R +G +绨 +蚓 +婀 +幡 +狩 +麾 +谢 +唢 +裸 +旌 +伉 +纶 +裂 +驳 +砼 +咛 +澄 +樨 +蹈 +宙 +澍 +倍 +貔 +操 +勇 +蟠 +摈 +砧 +虬 +够 +缁 +悦 +藿 +撸 +艹 +摁 +淹 +豇 +虎 +榭 +ˉ +吱 +d +° +喧 +荀 +踱 +侮 +奋 +偕 +饷 +犍 +惮 +坑 +璎 +徘 +宛 +妆 +袈 +倩 +窦 +昂 +荏 +乖 +K +怅 +撰 +鳙 +牙 +袁 +酞 +X +痿 +琼 +闸 +雁 +趾 +荚 +虻 +涝 +《 +杏 +韭 +偈 +烤 +绫 +鞘 +卉 +症 +遢 +蓥 +诋 +杭 +荨 +匆 +竣 +簪 +辙 +敕 +虞 +丹 +缭 +咩 +黟 +m +淤 +瑕 +咂 +铉 +硼 +茨 +嶂 +痒 +畸 +敬 +涿 +粪 +窘 +熟 +叔 +嫔 +盾 +忱 +裘 +憾 +梵 +赡 +珙 +咯 +娘 +庙 +溯 +胺 +葱 +痪 +摊 +荷 +卞 +乒 +髦 +寐 +铭 +坩 +胗 +枷 +爆 +溟 +嚼 +羚 +砬 +轨 +惊 +挠 +罄 +竽 +菏 +氧 +浅 +楣 +盼 +枢 +炸 +阆 +杯 +谏 +噬 +淇 +渺 +俪 +秆 +墓 +泪 +跻 +砌 +痰 +垡 +渡 +耽 +釜 +讶 +鳎 +煞 +呗 +韶 +舶 +绷 +鹳 +缜 +旷 +铊 +皱 +龌 +檀 +霖 +奄 +槐 +艳 +蝶 +旋 +哝 +赶 +骞 +蚧 +腊 +盈 +丁 +` +蜚 +矸 +蝙 +睨 +嚓 +僻 +鬼 +醴 +夜 +彝 +磊 +笔 +拔 +栀 +糕 +厦 +邰 +纫 +逭 +纤 +眦 +膊 +馍 +躇 +烯 +蘼 +冬 +诤 +暄 +骶 +哑 +瘠 +」 +臊 +丕 +愈 +咱 +螺 +擅 +跋 +搏 +硪 +谄 +笠 +淡 +嘿 +骅 +谧 +鼎 +皋 +姚 +歼 +蠢 +驼 +耳 +胬 +挝 +涯 +狗 +蒽 +孓 +犷 +凉 +芦 +箴 +铤 +孤 +嘛 +坤 +V +茴 +朦 +挞 +尖 +橙 +诞 +搴 +碇 +洵 +浚 +帚 +蜍 +漯 +柘 +嚎 +讽 +芭 +荤 +咻 +祠 +秉 +跖 +埃 +吓 +糯 +眷 +馒 +惹 +娼 +鲑 +嫩 +讴 +轮 +瞥 +靶 +褚 +乏 +缤 +宋 +帧 +删 +驱 +碎 +扑 +俩 +俄 +偏 +涣 +竹 +噱 +皙 +佰 +渚 +唧 +斡 +# +镉 +刀 +崎 +筐 +佣 +夭 +贰 +肴 +峙 +哔 +艿 +匐 +牺 +镛 +缘 +仡 +嫡 +劣 +枸 +堀 +梨 +簿 +鸭 +蒸 +亦 +稽 +浴 +{ +衢 +束 +槲 +j +阁 +揍 +疥 +棋 +潋 +聪 +窜 +乓 +睛 +插 +冉 +阪 +苍 +搽 +「 +蟾 +螟 +幸 +仇 +樽 +撂 +慢 +跤 +幔 +俚 +淅 +覃 +觊 +溶 +妖 +帛 +侨 +曰 +妾 +泗 +· +: +瀘 +風 +Ë +( +) +∶ +紅 +紗 +瑭 +雲 +頭 +鶏 +財 +許 +• +¥ +樂 +焗 +麗 +— +; +滙 +東 +榮 +繪 +興 +… +門 +業 +π +楊 +國 +顧 +é +盤 +寳 +Λ +龍 +鳳 +島 +誌 +緣 +結 +銭 +萬 +勝 +祎 +璟 +優 +歡 +臨 +時 +購 += +★ +藍 +昇 +鐵 +觀 +勅 +農 +聲 +畫 +兿 +術 +發 +劉 +記 +專 +耑 +園 +書 +壴 +種 +Ο +● +褀 +號 +銀 +匯 +敟 +锘 +葉 +橪 +廣 +進 +蒄 +鑽 +阝 +祙 +貢 +鍋 +豊 +夬 +喆 +團 +閣 +開 +燁 +賓 +館 +酡 +沔 +順 ++ +硚 +劵 +饸 +陽 +車 +湓 +復 +萊 +氣 +軒 +華 +堃 +迮 +纟 +戶 +馬 +學 +裡 +電 +嶽 +獨 +マ +シ +サ +ジ +燘 +袪 +環 +❤ +臺 +灣 +専 +賣 +孖 +聖 +攝 +線 +▪ +α +傢 +俬 +夢 +達 +莊 +喬 +貝 +薩 +劍 +羅 +壓 +棛 +饦 +尃 +璈 +囍 +醫 +G +I +A +# +N +鷄 +髙 +嬰 +啓 +約 +隹 +潔 +賴 +藝 +~ +寶 +籣 +麺 +  +嶺 +√ +義 +網 +峩 +長 +∧ +魚 +機 +構 +② +鳯 +偉 +L +B +㙟 +畵 +鴿 +' +詩 +溝 +嚞 +屌 +藔 +佧 +玥 +蘭 +織 +1 +3 +9 +0 +7 +點 +砭 +鴨 +鋪 +銘 +廳 +弍 +‧ +創 +湯 +坶 +℃ +卩 +骝 +& +烜 +荘 +當 +潤 +扞 +係 +懷 +碶 +钅 +蚨 +讠 +☆ +叢 +爲 +埗 +涫 +塗 +→ +楽 +現 +鯨 +愛 +瑪 +鈺 +忄 +悶 +藥 +飾 +樓 +視 +孬 +ㆍ +燚 +苪 +師 +① +丼 +锽 +│ +韓 +標 +è +兒 +閏 +匋 +張 +漢 +Ü +髪 +會 +閑 +檔 +習 +裝 +の +峯 +菘 +輝 +И +雞 +釣 +億 +浐 +K +O +R +8 +H +E +P +T +W +D +S +C +M +F +姌 +饹 +» +晞 +廰 +ä +嵯 +鷹 +負 +飲 +絲 +冚 +楗 +澤 +綫 +區 +❋ +← +質 +靑 +揚 +③ +滬 +統 +産 +協 +﹑ +乸 +畐 +經 +運 +際 +洺 +岽 +為 +粵 +諾 +崋 +豐 +碁 +ɔ +V +2 +6 +齋 +誠 +訂 +´ +勑 +雙 +陳 +無 +í +泩 +媄 +夌 +刂 +i +c +t +o +r +a +嘢 +耄 +燴 +暃 +壽 +媽 +靈 +抻 +體 +唻 +É +冮 +甹 +鎮 +錦 +ʌ +蜛 +蠄 +尓 +駕 +戀 +飬 +逹 +倫 +貴 +極 +Я +Й +寬 +磚 +嶪 +郎 +職 +| +間 +n +d +剎 +伈 +課 +飛 +橋 +瘊 +№ +譜 +骓 +圗 +滘 +縣 +粿 +咅 +養 +濤 +彳 +® +% +Ⅱ +啰 +㴪 +見 +矞 +薬 +糁 +邨 +鲮 +顔 +罱 +З +選 +話 +贏 +氪 +俵 +競 +瑩 +繡 +枱 +β +綉 +á +獅 +爾 +™ +麵 +戋 +淩 +徳 +個 +劇 +場 +務 +簡 +寵 +h +實 +膠 +轱 +圖 +築 +嘣 +樹 +㸃 +營 +耵 +孫 +饃 +鄺 +飯 +麯 +遠 +輸 +坫 +孃 +乚 +閃 +鏢 +㎡ +題 +廠 +關 +↑ +爺 +將 +軍 +連 +篦 +覌 +參 +箸 +- +窠 +棽 +寕 +夀 +爰 +歐 +呙 +閥 +頡 +熱 +雎 +垟 +裟 +凬 +勁 +帑 +馕 +夆 +疌 +枼 +馮 +貨 +蒤 +樸 +彧 +旸 +靜 +龢 +暢 +㐱 +鳥 +珺 +鏡 +灡 +爭 +堷 +廚 +Ó +騰 +診 +┅ +蘇 +褔 +凱 +頂 +豕 +亞 +帥 +嘬 +⊥ +仺 +桖 +複 +饣 +絡 +穂 +顏 +棟 +納 +▏ +濟 +親 +設 +計 +攵 +埌 +烺 +ò +頤 +燦 +蓮 +撻 +節 +講 +濱 +濃 +娽 +洳 +朿 +燈 +鈴 +護 +膚 +铔 +過 +補 +Z +U +5 +4 +坋 +闿 +䖝 +餘 +缐 +铞 +貿 +铪 +桼 +趙 +鍊 +[ +㐂 +垚 +菓 +揸 +捲 +鐘 +滏 +𣇉 +爍 +輪 +燜 +鴻 +鮮 +動 +鹞 +鷗 +丄 +慶 +鉌 +翥 +飮 +腸 +⇋ +漁 +覺 +來 +熘 +昴 +翏 +鲱 +圧 +鄉 +萭 +頔 +爐 +嫚 +г +貭 +類 +聯 +幛 +輕 +訓 +鑒 +夋 +锨 +芃 +珣 +䝉 +扙 +嵐 +銷 +處 +ㄱ +語 +誘 +苝 +歸 +儀 +燒 +楿 +內 +粢 +葒 +奧 +麥 +礻 +滿 +蠔 +穵 +瞭 +態 +鱬 +榞 +硂 +鄭 +黃 +煙 +祐 +奓 +逺 +* +瑄 +獲 +聞 +薦 +讀 +這 +樣 +決 +問 +啟 +們 +執 +説 +轉 +單 +隨 +唘 +帶 +倉 +庫 +還 +贈 +尙 +皺 +■ +餅 +產 +○ +∈ +報 +狀 +楓 +賠 +琯 +嗮 +禮 +` +傳 +> +≤ +嗞 +Φ +≥ +換 +咭 +∣ +↓ +曬 +ε +応 +寫 +″ +終 +様 +純 +費 +療 +聨 +凍 +壐 +郵 +ü +黒 +∫ +製 +塊 +調 +軽 +確 +撃 +級 +馴 +Ⅲ +涇 +繹 +數 +碼 +證 +狒 +処 +劑 +< +晧 +賀 +衆 +] +櫥 +兩 +陰 +絶 +對 +鯉 +憶 +◎ +p +e +Y +蕒 +煖 +頓 +測 +試 +鼽 +僑 +碩 +妝 +帯 +≈ +鐡 +舖 +權 +喫 +倆 +ˋ +該 +悅 +ā +俫 +. +f +s +b +m +k +g +u +j +貼 +淨 +濕 +針 +適 +備 +l +/ +給 +謢 +強 +觸 +衛 +與 +⊙ +$ +緯 +變 +⑴ +⑵ +⑶ +㎏ +殺 +∩ +幚 +─ +價 +▲ +離 +ú +ó +飄 +烏 +関 +閟 +﹝ +﹞ +邏 +輯 +鍵 +驗 +訣 +導 +歷 +屆 +層 +▼ +儱 +錄 +熳 +ē +艦 +吋 +錶 +辧 +飼 +顯 +④ +禦 +販 +気 +対 +枰 +閩 +紀 +幹 +瞓 +貊 +淚 +△ +眞 +墊 +Ω +獻 +褲 +縫 +緑 +亜 +鉅 +餠 +{ +} +◆ +蘆 +薈 +█ +◇ +溫 +彈 +晳 +粧 +犸 +穩 +訊 +崬 +凖 +熥 +П +舊 +條 +紋 +圍 +Ⅳ +筆 +尷 +難 +雜 +錯 +綁 +識 +頰 +鎖 +艶 +□ +殁 +殼 +⑧ +├ +▕ +鵬 +ǐ +ō +ǒ +糝 +綱 +▎ +μ +盜 +饅 +醬 +籤 +蓋 +釀 +鹽 +據 +à +ɡ +辦 +◥ +彐 +┌ +婦 +獸 +鲩 +伱 +ī +蒟 +蒻 +齊 +袆 +腦 +寧 +凈 +妳 +煥 +詢 +偽 +謹 +啫 +鯽 +騷 +鱸 +損 +傷 +鎻 +髮 +買 +冏 +儥 +両 +﹢ +∞ +載 +喰 +z +羙 +悵 +燙 +曉 +員 +組 +徹 +艷 +痠 +鋼 +鼙 +縮 +細 +嚒 +爯 +≠ +維 +" +鱻 +壇 +厍 +帰 +浥 +犇 +薡 +軎 +² +應 +醜 +刪 +緻 +鶴 +賜 +噁 +軌 +尨 +镔 +鷺 +槗 +彌 +葚 +濛 +請 +溇 +緹 +賢 +訪 +獴 +瑅 +資 +縤 +陣 +蕟 +栢 +韻 +祼 +恁 +伢 +謝 +劃 +涑 +總 +衖 +踺 +砋 +凉 +籃 +駿 +苼 +瘋 +昽 +紡 +驊 +腎 +﹗ +響 +杋 +剛 +嚴 +禪 +歓 +槍 +傘 +檸 +檫 +炣 +勢 +鏜 +鎢 +銑 +尐 +減 +奪 +惡 +θ +僮 +婭 +臘 +ū +ì +殻 +鉄 +∑ +蛲 +焼 +緖 +續 +紹 +懮 \ No newline at end of file diff --git a/iopaint/model/anytext/utils.py b/iopaint/model/anytext/utils.py new file mode 100644 index 0000000..c9f55b8 --- /dev/null +++ b/iopaint/model/anytext/utils.py @@ -0,0 +1,151 @@ +import os +import datetime +import cv2 +import numpy as np +from PIL import Image, ImageDraw + + +def save_images(img_list, folder): + if not os.path.exists(folder): + os.makedirs(folder) + now = datetime.datetime.now() + date_str = now.strftime("%Y-%m-%d") + folder_path = os.path.join(folder, date_str) + if not os.path.exists(folder_path): + os.makedirs(folder_path) + time_str = now.strftime("%H_%M_%S") + for idx, img in enumerate(img_list): + image_number = idx + 1 + filename = f"{time_str}_{image_number}.jpg" + save_path = os.path.join(folder_path, filename) + cv2.imwrite(save_path, img[..., ::-1]) + + +def check_channels(image): + channels = image.shape[2] if len(image.shape) == 3 else 1 + if channels == 1: + image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) + elif channels > 3: + image = image[:, :, :3] + return image + + +def resize_image(img, max_length=768): + height, width = img.shape[:2] + max_dimension = max(height, width) + + if max_dimension > max_length: + scale_factor = max_length / max_dimension + new_width = int(round(width * scale_factor)) + new_height = int(round(height * scale_factor)) + new_size = (new_width, new_height) + img = cv2.resize(img, new_size) + height, width = img.shape[:2] + img = cv2.resize(img, (width - (width % 64), height - (height % 64))) + return img + + +def insert_spaces(string, nSpace): + if nSpace == 0: + return string + new_string = "" + for char in string: + new_string += char + " " * nSpace + return new_string[:-nSpace] + + +def draw_glyph(font, text): + g_size = 50 + W, H = (512, 80) + new_font = font.font_variant(size=g_size) + img = Image.new(mode="1", size=(W, H), color=0) + draw = ImageDraw.Draw(img) + left, top, right, bottom = new_font.getbbox(text) + text_width = max(right - left, 5) + text_height = max(bottom - top, 5) + ratio = min(W * 0.9 / text_width, H * 0.9 / text_height) + new_font = font.font_variant(size=int(g_size * ratio)) + + text_width, text_height = new_font.getsize(text) + offset_x, offset_y = new_font.getoffset(text) + x = (img.width - text_width) // 2 + y = (img.height - text_height) // 2 - offset_y // 2 + draw.text((x, y), text, font=new_font, fill="white") + img = np.expand_dims(np.array(img), axis=2).astype(np.float64) + return img + + +def draw_glyph2( + font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True +): + enlarge_polygon = polygon * scale + rect = cv2.minAreaRect(enlarge_polygon) + box = cv2.boxPoints(rect) + box = np.int0(box) + w, h = rect[1] + angle = rect[2] + if angle < -45: + angle += 90 + angle = -angle + if w < h: + angle += 90 + + vert = False + if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng: + _w = max(box[:, 0]) - min(box[:, 0]) + _h = max(box[:, 1]) - min(box[:, 1]) + if _h >= _w: + vert = True + angle = 0 + + img = np.zeros((height * scale, width * scale, 3), np.uint8) + img = Image.fromarray(img) + + # infer font size + image4ratio = Image.new("RGB", img.size, "white") + draw = ImageDraw.Draw(image4ratio) + _, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font) + text_w = min(w, h) * (_tw / _th) + if text_w <= max(w, h): + # add space + if len(text) > 1 and not vert and add_space: + for i in range(1, 100): + text_space = insert_spaces(text, i) + _, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font) + if min(w, h) * (_tw2 / _th2) > max(w, h): + break + text = insert_spaces(text, i - 1) + font_size = min(w, h) * 0.80 + else: + shrink = 0.75 if vert else 0.85 + font_size = min(w, h) / (text_w / max(w, h)) * shrink + new_font = font.font_variant(size=int(font_size)) + + left, top, right, bottom = new_font.getbbox(text) + text_width = right - left + text_height = bottom - top + + layer = Image.new("RGBA", img.size, (0, 0, 0, 0)) + draw = ImageDraw.Draw(layer) + if not vert: + draw.text( + (rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top), + text, + font=new_font, + fill=(255, 255, 255, 255), + ) + else: + x_s = min(box[:, 0]) + _w // 2 - text_height // 2 + y_s = min(box[:, 1]) + for c in text: + draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255)) + _, _t, _, _b = new_font.getbbox(c) + y_s += _b + + rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1])) + + x_offset = int((img.width - rotated_layer.width) / 2) + y_offset = int((img.height - rotated_layer.height) / 2) + img.paste(rotated_layer, (x_offset, y_offset), rotated_layer) + img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64) + return img