This commit is contained in:
Qing 2023-02-07 21:00:19 +08:00
parent 3f6bc8fada
commit fbb278298b
3 changed files with 132 additions and 109 deletions

View File

@ -4,8 +4,14 @@ import PIL.Image
import cv2 import cv2
import numpy as np import numpy as np
import torch import torch
from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, \ from diffusers import (
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler PNDMScheduler,
DDIMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from loguru import logger from loguru import logger
from lama_cleaner.model.base import DiffusionInpaintModel from lama_cleaner.model.base import DiffusionInpaintModel
@ -16,7 +22,7 @@ from lama_cleaner.schema import Config, SDSampler
class CPUTextEncoderWrapper: class CPUTextEncoderWrapper:
def __init__(self, text_encoder, torch_dtype): def __init__(self, text_encoder, torch_dtype):
self.config = text_encoder.config self.config = text_encoder.config
self.text_encoder = text_encoder.to(torch.device('cpu'), non_blocking=True) self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
self.torch_dtype = torch_dtype self.torch_dtype = torch_dtype
del text_encoder del text_encoder
@ -24,7 +30,15 @@ class CPUTextEncoderWrapper:
def __call__(self, x, **kwargs): def __call__(self, x, **kwargs):
input_device = x.device input_device = x.device
return [self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0].to(input_device).to(self.torch_dtype)] return [
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0]
.to(input_device)
.to(self.torch_dtype)
]
@property
def dtype(self):
return self.torch_dtype
class SD(DiffusionInpaintModel): class SD(DiffusionInpaintModel):
@ -33,18 +47,23 @@ class SD(DiffusionInpaintModel):
def init_model(self, device: torch.device, **kwargs): def init_model(self, device: torch.device, **kwargs):
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
fp16 = not kwargs.get('no_half', False)
model_kwargs = {"local_files_only": kwargs.get('local_files_only', kwargs['sd_run_local'])} fp16 = not kwargs.get("no_half", False)
if kwargs['disable_nsfw'] or kwargs.get('cpu_offload', False):
model_kwargs = {
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"])
}
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
logger.info("Disable Stable Diffusion Model NSFW checker") logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(dict( model_kwargs.update(
safety_checker=None, dict(
feature_extractor=None, safety_checker=None,
requires_safety_checker=False feature_extractor=None,
)) requires_safety_checker=False,
)
)
use_gpu = device == torch.device('cuda') and torch.cuda.is_available() use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
self.model = StableDiffusionInpaintPipeline.from_pretrained( self.model = StableDiffusionInpaintPipeline.from_pretrained(
self.model_id_or_path, self.model_id_or_path,
@ -57,18 +76,20 @@ class SD(DiffusionInpaintModel):
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing() self.model.enable_attention_slicing()
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
if kwargs.get('enable_xformers', False): if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention() self.model.enable_xformers_memory_efficient_attention()
if kwargs.get('cpu_offload', False) and use_gpu: if kwargs.get("cpu_offload", False) and use_gpu:
# TODO: gpu_id # TODO: gpu_id
logger.info("Enable sequential cpu offload") logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0) self.model.enable_sequential_cpu_offload(gpu_id=0)
else: else:
self.model = self.model.to(device) self.model = self.model.to(device)
if kwargs['sd_cpu_textencoder']: if kwargs["sd_cpu_textencoder"]:
logger.info("Run Stable Diffusion TextEncoder on CPU") logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(self.model.text_encoder, torch_dtype) self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype
)
self.callback = kwargs.pop("callback", None) self.callback = kwargs.pop("callback", None)

View File

@ -1,17 +1,23 @@
import io import io
from pathlib import Path
from PIL import Image from PIL import Image
from lama_cleaner.helper import pil_to_bytes from lama_cleaner.helper import pil_to_bytes
current_dir = Path(__file__).parent.absolute().resolve()
png_img_p = current_dir / "image.png"
jpg_img_p = current_dir / "bunny.jpeg"
def print_exif(exif): def print_exif(exif):
for k, v in exif.items(): for k, v in exif.items():
print(f"{k}: {v}") print(f"{k}: {v}")
def test_png(): def test_png():
img = Image.open("image.png") img = Image.open(png_img_p)
exif = img.getexif() exif = img.getexif()
print_exif(exif) print_exif(exif)
@ -24,7 +30,7 @@ def test_png():
def test_jpeg(): def test_jpeg():
img = Image.open("bunny.jpeg") img = Image.open(jpg_img_p)
exif = img.getexif() exif = img.getexif()
print_exif(exif) print_exif(exif)

View File

@ -8,33 +8,37 @@ from lama_cleaner.schema import HDStrategy, SDSampler
from lama_cleaner.tests.test_model import get_config, assert_equal from lama_cleaner.tests.test_model import get_config, assert_equal
current_dir = Path(__file__).parent.absolute().resolve() current_dir = Path(__file__).parent.absolute().resolve()
save_dir = current_dir / 'result' save_dir = current_dir / "result"
save_dir.mkdir(exist_ok=True, parents=True) save_dir.mkdir(exist_ok=True, parents=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu' device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device) device = torch.device(device)
@pytest.mark.parametrize("sd_device", ['cuda']) @pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim]) @pytest.mark.parametrize("sampler", [SDSampler.ddim])
@pytest.mark.parametrize("cpu_textencoder", [True, False]) @pytest.mark.parametrize("cpu_textencoder", [True, False])
@pytest.mark.parametrize("disable_nsfw", [True, False]) @pytest.mark.parametrize("disable_nsfw", [True, False])
def test_runway_sd_1_5_ddim(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw): def test_runway_sd_1_5_ddim(
sd_device, strategy, sampler, cpu_textencoder, disable_nsfw
):
def callback(i, t, latents): def callback(i, t, latents):
print(f"sd_step_{i}") pass
if sd_device == 'cuda' and not torch.cuda.is_available(): if sd_device == "cuda" and not torch.cuda.is_available():
return return
sd_steps = 50 if sd_device == 'cuda' else 1 sd_steps = 50 if sd_device == "cuda" else 1
model = ModelManager(name="sd1.5", model = ModelManager(
device=torch.device(sd_device), name="sd1.5",
hf_access_token="", device=torch.device(sd_device),
sd_run_local=True, hf_access_token="",
disable_nsfw=disable_nsfw, sd_run_local=True,
sd_cpu_textencoder=cpu_textencoder, disable_nsfw=disable_nsfw,
callback=callback) sd_cpu_textencoder=cpu_textencoder,
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps) callback=callback,
)
cfg = get_config(strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps)
cfg.sd_sampler = sampler cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}" name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
@ -45,31 +49,35 @@ def test_runway_sd_1_5_ddim(sd_device, strategy, sampler, cpu_textencoder, disab
f"runway_sd_{strategy.capitalize()}_{name}.png", f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3 fx=1.3,
) )
@pytest.mark.parametrize("sd_device", ['cuda']) @pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a]) @pytest.mark.parametrize(
"sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a]
)
@pytest.mark.parametrize("cpu_textencoder", [False]) @pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [True]) @pytest.mark.parametrize("disable_nsfw", [True])
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw): def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
def callback(i, t, latents): def callback(i, t, latents):
print(f"sd_step_{i}") print(f"sd_step_{i}")
if sd_device == 'cuda' and not torch.cuda.is_available(): if sd_device == "cuda" and not torch.cuda.is_available():
return return
sd_steps = 50 if sd_device == 'cuda' else 1 sd_steps = 50 if sd_device == "cuda" else 1
model = ModelManager(name="sd1.5", model = ModelManager(
device=torch.device(sd_device), name="sd1.5",
hf_access_token="", device=torch.device(sd_device),
sd_run_local=True, hf_access_token="",
disable_nsfw=disable_nsfw, sd_run_local=True,
sd_cpu_textencoder=cpu_textencoder, disable_nsfw=disable_nsfw,
callback=callback) sd_cpu_textencoder=cpu_textencoder,
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps) callback=callback,
)
cfg = get_config(strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps)
cfg.sd_sampler = sampler cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}" name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
@ -80,35 +88,37 @@ def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_ns
f"runway_sd_{strategy.capitalize()}_{name}.png", f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3 fx=1.3,
) )
@pytest.mark.parametrize("sd_device", ['cuda']) @pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.ddim]) @pytest.mark.parametrize("sampler", [SDSampler.ddim])
def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler): def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
def callback(i, t, latents): def callback(i, t, latents):
pass pass
if sd_device == 'cuda' and not torch.cuda.is_available(): if sd_device == "cuda" and not torch.cuda.is_available():
return return
sd_steps = 50 if sd_device == 'cuda' else 1 sd_steps = 50 if sd_device == "cuda" else 1
model = ModelManager(name="sd1.5", model = ModelManager(
device=torch.device(sd_device), name="sd1.5",
hf_access_token="", device=torch.device(sd_device),
sd_run_local=True, hf_access_token="",
disable_nsfw=False, sd_run_local=True,
sd_cpu_textencoder=False, disable_nsfw=False,
callback=callback) sd_cpu_textencoder=False,
callback=callback,
)
cfg = get_config( cfg = get_config(
strategy, strategy,
sd_steps=sd_steps, sd_steps=sd_steps,
prompt='Face of a fox, high resolution, sitting on a park bench', prompt="Face of a fox, high resolution, sitting on a park bench",
negative_prompt='orange, yellow, small', negative_prompt="orange, yellow, small",
sd_sampler=sampler, sd_sampler=sampler,
sd_match_histograms=True sd_match_histograms=True,
) )
name = f"{sampler}_negative_prompt" name = f"{sampler}_negative_prompt"
@ -119,27 +129,33 @@ def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
f"runway_sd_{strategy.capitalize()}_{name}.png", f"runway_sd_{strategy.capitalize()}_{name}.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1 fx=1,
) )
@pytest.mark.parametrize("sd_device", ['cuda']) @pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a]) @pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
@pytest.mark.parametrize("cpu_textencoder", [False]) @pytest.mark.parametrize("cpu_textencoder", [False])
@pytest.mark.parametrize("disable_nsfw", [False]) @pytest.mark.parametrize("disable_nsfw", [False])
def test_runway_sd_1_5_sd_scale(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw): def test_runway_sd_1_5_sd_scale(
if sd_device == 'cuda' and not torch.cuda.is_available(): sd_device, strategy, sampler, cpu_textencoder, disable_nsfw
):
if sd_device == "cuda" and not torch.cuda.is_available():
return return
sd_steps = 50 if sd_device == 'cuda' else 1 sd_steps = 50 if sd_device == "cuda" else 1
model = ModelManager(name="sd1.5", model = ModelManager(
device=torch.device(sd_device), name="sd1.5",
hf_access_token="", device=torch.device(sd_device),
sd_run_local=True, hf_access_token="",
disable_nsfw=disable_nsfw, sd_run_local=True,
sd_cpu_textencoder=cpu_textencoder) disable_nsfw=disable_nsfw,
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps, sd_scale=0.85) sd_cpu_textencoder=cpu_textencoder,
)
cfg = get_config(
strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps, sd_scale=0.85
)
cfg.sd_sampler = sampler cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}" name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
@ -150,26 +166,30 @@ def test_runway_sd_1_5_sd_scale(sd_device, strategy, sampler, cpu_textencoder, d
f"runway_sd_{strategy.capitalize()}_{name}_sdscale.png", f"runway_sd_{strategy.capitalize()}_{name}_sdscale.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png", img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
fx=1.3 fx=1.3,
) )
@pytest.mark.parametrize("sd_device", ['cuda']) @pytest.mark.parametrize("sd_device", ["cuda"])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL]) @pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a]) @pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler): def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler):
if sd_device == 'cuda' and not torch.cuda.is_available(): if sd_device == "cuda" and not torch.cuda.is_available():
return return
sd_steps = 50 if sd_device == 'cuda' else 1 sd_steps = 50 if sd_device == "cuda" else 1
model = ModelManager(name="sd1.5", model = ModelManager(
device=torch.device(sd_device), name="sd1.5",
hf_access_token="", device=torch.device(sd_device),
sd_run_local=True, hf_access_token="",
disable_nsfw=True, sd_run_local=True,
sd_cpu_textencoder=False, disable_nsfw=True,
cpu_offload=True) sd_cpu_textencoder=False,
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=sd_steps, sd_scale=0.85) cpu_offload=True,
)
cfg = get_config(
strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps, sd_scale=0.85
)
cfg.sd_sampler = sampler cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}" name = f"device_{sd_device}_{sampler}"
@ -182,27 +202,3 @@ def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler):
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png", mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
) )
@pytest.mark.parametrize("sd_device", ['cpu'])
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
def test_runway_sd_1_5_cpu_offload_cpu_device(sd_device, strategy, sampler):
model = ModelManager(name="sd1.5",
device=torch.device(sd_device),
hf_access_token="",
sd_run_local=True,
disable_nsfw=False,
sd_cpu_textencoder=False,
cpu_offload=True)
cfg = get_config(strategy, prompt='a fox sitting on a bench', sd_steps=1, sd_scale=0.85)
cfg.sd_sampler = sampler
name = f"device_{sd_device}_{sampler}"
assert_equal(
model,
cfg,
f"runway_sd_{strategy.capitalize()}_{name}_cpu_offload_cpu_device.png",
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
)